Abstract
In the first part of this work it was determined that general circulation model (GCM) ECHAM4.5 shows more ability than CCM3.6 to simulate key climate features of Central America. For such reason, output from ECHAM4.5 was used to perform a dynamical downscaling experiment using the regional model MM5v3, in which a set of high-resolution simulations (of up to 30-km horizontal resolution) was generated for
January 2000.
The results of the dynamical downscaling allow to conclude that MM5v3 is able to suitably reproduce aspects of the Central American climate that GCMs cannot capture because of their coarse horizontal resolution, their limitations in representing both the regional topography and the mesoscale dynamical interactions. Comparison with data derived from observations indicates that the MM5v3 simulates the region of maximum
low-level wind that is related to the Intra-Americas Seas Low Level Jet, although the regional model underestimates its intensity. Regarding the precipitation patterns, they agree with those derived from the observations (drier areas in the Pacific, wetter areas in the Caribbean). Nevertheless, there is a generalized overestimation in the amount of simulated rain. The analysis of the standard deviation for a twelve-member sample shows areas in which MM5v3 has greater dispersion or uncertainty (mainly to the
south of Panama).
References
Amador, J. A.; Alfaro, E.; Lizano, O.; Magaña, V. (2006) “Atmospheric forcing of the eastern tropical Pacific: a review”, Progress in Oceanography 69(2–4): 101–142.
Arakawa, A.; Schubert, W. (1974) “Interaction of a cumulus cloud ensemble with the large scale environment: Part I”, J. Atmos. Sci. 31: 674–701.
Castro, C. L.; Pielke Sr., R. A.; Leoncini, G. (2005) “Dynamical downscaling: an assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS)”, J. Geophys. Res. 110 doi:10.1029/2004JD004721.
Chase, T. N.; Pielke Sr., R. A.; Castro, C. (2003) “Are present day climate simulations accurate enough for reliable regional downscaling?”, Water Resources Update 124: 26–34.
Cox, R.; Bauer, B. L.; Smith, T. (1998) “A mesoscale model intercomparison”, Bull. Amer. Meteor. Soc. 79: 265–283.
Dickinson, R. E.; Errico, R. M.; Giorgi, F.; Bates, G. T. (1989) “A regional climate model for Western United States”, Clim. Chang. 15: 383–422.
Dudhia, J. (1989) “Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model”, J. Atmos. Sci. 46: 3077–3107.
Dudhia, J.; Gill, D.; Guo, Y.-R.; Manning, K.; Wang, W.; Bruyere, C. (2005) “PSU/NCAR mesoscale modeling system tutorial class notes and users’ guide: MM5 modeling system version 3”, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado.
Duffy, P. B.; Govindasamy, B.; Milovich, J.; Taylor, K.; Wehner, M.; Lamont, A.; Thompson, S. (2003) “High resolution simulations of global climate. Part I: Present climate”, Clim. Dyn. 21: 371–390.
Gill, D. O. (1992) “A user’s guide to the Penn State/NCAR mesoscale modeling system”, NCAR Technical Note 381+IA.
Giorgi, F. (1990) “Simulation of regional climate using a limited area model nested in general circulation model” J. Climate 3: 941–963.
Giorgi, F.; Bates, G. T. (1989) “The climatological skill of a regional model over complex terrain”, Mon. Wea. Rev. 117: 2325–2347.
Grell, G. A.; Kuo, Y. H.; Pasch, R. (1991) “Semi-prognostic tests of cumulus parameterization schemes in the middle latitudes”, Mon. Wea. Rev. 119: 5–31.
Grell, G. A.; Dudhia, J.; Stauffer, D. R. (1993) “A description of the fifth generation Penn State/NCAR mesoscale model”, NCAR Technical Note 398+IA, National Center for Atmospheric Research, Boulder, Colorado.
Hesselbjerg, C. J. (2000) “Use of regional climate models in regional scenario construction”, in: S. Planton, C. Hanson, D. Viner D., M. Hoepffner (Eds.) ECLAT-2 Workshop, Keynote paper No. 1, Report No. 4, Climatic Research Unit, UEA, 25-27 October 2000, Toulouse, France: 26–37.
Huth, R.; Metelka, L.; Kliegrová, S.; Sedlák, P.; Kyselý, J.; Mládek, R.; Halenka, T.; Kalvová, J. (2001) “Regional climate model Aladin-Climate – A tool for regionalization of climate change estimates in Central Europe: first results”, in: 150 Years of Meteorological Service in Central Europe [CD-ROM], Stará Lesná, Slovakia: 9 pp.
Huth, R.; Mládek, R.; Metelka, L; Sedlák, P.; Huthová, Z.; Kliegrová, S.; Kyselý, J.; Pokorná, L.; Halenka, T.; Janousek, M. (2003) “On the integrability of limited- area numerical weather prediction model Aladin over extended time periods”, Stud. Geophys. Geod. 47: 863–873.
Jones, R.G.; Murphy, J. M.; Noguer, M. (1995) “Simulation of climate change over Europe using a nested regional-climate model. Part I: assessment of control climate, including sensitivity to location of lateral boundaries”, Q. J. R. Meteor. Soc. 121: 1413–1449.
Kain, J. S.; Fritsch, J. M. (1993) “Convective parameterization for mesoscale models: the Kain-Fritsch scheme. The representation of cumulus convection in numerical models”, Meteor. Monogr. 24: 165–170.
Kuo, H. L. (1974) “Further studies of the parameterizations of the influence of cumulus convection on large scale flow”, J. Atmos. Sci. 31: 1232–1240.
Leung, L. R.; Mearns, L. O.; Giorgi, F.; Wilby, R. L. (2003) “Regional climate research: needs and opportunities”, Bull. Amer. Meteor. Soc. 84: 89–95.
Pope, V. D.; Stratton, R. A. (2002) “The processes governing horizontal resolution sensitivity in a climate model”, Clim. Dyn. 19: 211–236.
Qian, J. H.; Seth, A.; Zebiak, S. (2003) “Reinitialized versus continuous simulations for regional climate downscaling”, Mon. Wea. Rev. 131: 2857–2874.
Rivera, E. R.; Amador, J. A. (2008): “Predicción estacional del clima en Centroamérica mediante la reducción de escala dinámica. Parte I: Evaluación de los modelos de circulación general CCM3.6 y ECHAM4.5”, aceptado en Revista de Matemática: Teoría y Aplicaciones.
Silva, Y. (2000) “Descripción del modelo de meso-escala PSU/NCAR MM5”, en: Primer Seminario de Modelaje Numérico, Oceánico, Atmosférico, Hidrológico y Biológico, 16 de agosto de 2000, Instituto Geofísico del Perú, Lima, Perú.
Takle, E. S.; Gutowski Jr., W. J.; Arritt, R. W.; Pan, Z.; Anderson, C. J.; Ramos da Silva, R.; Caya, D.; Chen, S.-C.; Giorgi, F.; Christensen, J. H.; Hong, S.-Y.; Juang, H.-M.; Katzfey, J.; Lapenta, W. M.; Laprise, R.; Liston, G. E.; Lopez, P.; McGregor, J.; Pielke Sr., R. A.; Roads, J. O. (1999) “Project to intercompare regional climate simulations (PIRCS): description and initial results”, J. Geophys. Res. 104: 19443–19461.
Walsh, K.; McGregor, J. L. (1995) “January and July climate simulations over the Australian region using a limited-area model”, J. Climate 8: 2387–2403.
Wang, Y.; Leung, L. R.; McGregor, J. L.; Lee, D.-K.; Wang, W.-C.; Ding, Y.-H.; Kimura, F. (2004) “Regional climate modeling: progress, challenges and prospects”, J. Meteor. Soc. Japan 82(6): 1599-1628.
Wilby, R. L.; Dawson, C. W. (2001) “Using SDSM – A decision support tool for the assessment of regional climate change impacts”, Environmental Modelling & Software 17(2): 145–157.
Wilks, D. S. (1995) Statistical Methods in the Atmospheric Sciences. Academic Press, New York.
Zhang, D. L.; Anthes, R. A. (1982) “A high-resolution model of the planetary boundary layer sensitivity tests and comparisons with SESAME-79 data”, J. Appl. Meteor. 21: 1594–1609.