Abstract
We define a prequantization in the category of smooth diffeological spaces ( a category which includes finite an infinite dimensional systems), in the case where the symplectic form is exact, extending, for this case, the results of Kirillov, Kostant and Souriau which are devoloped for finite dimensional Physical systems.References
Adams, M.; Ratiu, T.; Schmid, R. (1985) “A Lie group structure of diffeomorphism groups and invertible Fourier integral operators, with applications”, MSRI Publications, V. Kac, ed., Springer, New York.
Donato, P. (1988) “Géométrie des Orbites Coadjointes des Groupes de Di fféomorphismes”, in Lect. Notes in Math.1416, Springer-Verlag, Berlin: 84–104.
Donato, P. (1992) “Les difféomorphismes du cercle comme orbite symplectique dans les moments de Virasoro”, CPT Preprint, CNRS–Luminy.
Donato, P.; Iglesias, P. (1987) “Cohomologie des formes dans les espaces difféologiques”, CPT Preprint, CNRS–Luminy.
Iglesias, P. (1985) Fibrations Difféologiques et Homotopie. Thèse de 3-ème cycle, CPT, Marseille.
Kirillov, A.A. (1976) Elements of the Theory of Representations. Springer-Verlag, Berlin.
Souriau, J.M. (1985) “Un algoritme générateur de structures quantiques”, Asterisque: 341–399.
Torre, C.A. (1993) “A symplectic structure on coadjoint orbits of diffeomorphism subgroups”, Ciencia y Tecnología 17(2): 1–14.
Torre, C.A. (1996) “A tangent bundle on diffeological spaces”, Preprint.
Woodhouse, N. (1992) Geometric Quantization. Clarendon Press.
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 1997 Carlos A. Torre