Abstract
In this article there are exposed some new thechniques for hte search of global optima inthe partitioning problem in Cluster Analysis. With these thechniques the results are sensibly improved with respect to the traditional methods. The methods developed here are well known in Combinatorial Optimization: i) simulated annealing; ii) tabu search, iii) genetic algorithms. We use these three approaches in the partitioning problem for clustering, following a search xhee similar to that of Regnier's algorithm of transfers.
References
[Aar90] Aarts, E.; Korst, J. (1990) Simulated Annealing and Boltzmann Machines. A Stochastic Approach to Combinatorial Optimization and Neural Computing. John Wiley & Sons, Chichester.
[Pag76] Cailliez, F.; Pagès, J.P. (1976) Introduction à l’Analyse des Données. SMASH, París
[Cel89] Celeux, G.; Diday, E.; Govaert, G.; Lechevallier, Y.; Ralambondrainy, H. (1989) Classification Automatique des Données. Environnement Statistique et Informa-tique. Dunod-Informatique, París.
[ˇCer85]ˇCerny, V. (1985) “Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm”, Journal of Optimization Theory and Applications 45: 41–51.
[Did80] Diday, E. y colaboradores (1980) Optimisation en Classification Automatique, 2 tomos. INRIA, Rocquencourt.
[Did82] Diday, E.; Lemaire, J.; Pouget, J.; Testu, F. (1982) Eléments d’Analyse de Données. Dunod, París.
[Eve93] Everitt, B.S. (1993) Cluster Analysis. 3a edición. Edward Arnold, Londres.
[Glo93] Glover, F. et al. (1993) “Tabu search: an introduction”, Annals of Operations Research, 41(1–4): 1–28.
[Gol89] Goldberg, D. E. (1989) Genetic Algorithm in Search, Optimization and Machine Learning. Addison-Wesley, Reading-Mass.
[Kir83] Kirkpatrick, S.; Gelatt, D.; Vecchi, M.P. (1983) “Optimization by simulated annealing”, Science220: 671–680.
[Kle90] Klein, R. W.; Dubes, R. C. (1990) “Experiments in projection and clustering by simulated annealing”, Pattern Recognition22: 213–220.
[Knu81] Knuth, D.E. (1981) Seminumerical Algorithms. Segunda edición, volumen 2 del libro The Art of Computer Programming. Addison-Wesley, Reading, Mass.
[Laa88] Laarhoven, P.; Aarts, E.; Korst, J. (1988)Simulated Annealing: Theory andApplications. Kluwer Academic Publishers, Dordrecht.
[Ler81] Lerman, I.C. (1981) Classification et Analyse Ordinale des Données. Dunod, París.
[Mur96] Murillo, A.; Trejos, J. (1996) “Classification tabou basée en transferts”, IV Journ. Soc. Frac. Classif., S. Joly & G. Le Calvé (eds.), Vannes: 26.1–26.4.
[Piz87] Piza, E. (1987) “Clasificación Automática Jerárquica Aglomerativa”, Revista de Ciencias Económicas 7(1).}
[Piz96] Piza, E.; Trejos, J. (1996) “Partitionnement par recuit simulé”, IV Journ. Soc. Frac. Classif., S. Joly & G. Le Calvé (eds.), Vannes: 27.1–27.4.
[Pre90] Press, W.H.; Flannery, B.P.; Teulolsky, S.A.; Vetterling, W.T. (1990) Numerical Recipes (Fortran Version). The Art of Scientific Computing. Cambridge University Press, New York.
[Rud94] Rudolph, G. (1994) “Convergence of a genetic algorithm”, IEEE Transactions on Neural Networks 5(1), 96–101.
[Sch78] Schektman, Y. (1978) “Estadística Descriptiva”, I parte, Memorias I Simposio Métodos Matemáticos Aplicados a las Ciencias, J. Badia, Y. Schektman y J. Poltronieri (eds.), Universidad de Costa Rica, San Pedro: 9–67.
[Tre96] Trejos, J. (1996) “Un algorithme génétique de partitionnement”, IV Journ. Soc.Frac. Classif., S. Joly & G. Le Calvé (eds.), Vannes: 31.1–31.4.
[Tre98] Trejos, J.; Piza, E.; Murillo, A. (1998) “Global stochastic optimization techniques applied to partitioning”, Advances in Data Science and Classification, M. Rizzi, M. Vichi & H.-H, Bock (eds.), Springer–Verlag, Berlin: 185–190.