Abstract
A variational principle for several free boundary value problems using a relaxation approach is presented. The relaxed Energy functional is concave and it is defined on a convex set, so that the minimizing points are characteristic functions of sets. As a consequence of the first order optimality conditions, it is shown that the corresponding sets are domains bounded by free boundaries, so that the equivalence of the solution of the relaxed problem with the solution of several free boundary value problem is proved.
References
Alt, H.; Cafarelli, L. (1981) “Existence and regularity for a minimum problem withfree boundary”, J. Reine u. Angew. Mathematik 325: 104–144.
Ambrosio, L.; Butazzo, G. (1993) “An optimal design problem with perimeter penalization”, Calc. of Var.1: 55–69.
Butazzo, G.; Dal Maso, G. (1990) “Shape optimization for Dirichlet problems: relaxed solutions and optimality conditions”, Bull. AMS23: 531–535.
Cafarelli, L. (1989) “Free boundary problems, a survey in topics in calculus of variations”, M. Giaquinta (Ed.), Lect. Notes Math., Springer , New York.
Cea, J.; Malanowski, K. (1970) “An example of a max-min problem in partial differential equations”, SIAM J. on Control and Optimization 8: 305–316.
Chenais, D. (1975) On the existence of a solution in a domain identification problem”, J. Math. Anal. Appl. 52: 189–219.
Delfour, M. (1992) “Shape derivatives and differentiability of min-max”, in: Proceedings NATO-Université de Montréal Seminar on Shape Optimization and Free Boundaries, M. Delfour & G. Sabidussi (Eds.), Kluwer, Dordrecht.
Ekeland, I.; Teman, R. (1974) Analyse Convexe et Problèmes Variationnelles. Dunod, Paris.
Friedman, A.; Turkington, B. (1981) “Vortex rings: existence and asymptotic estimates”, Trans. AMS268: 1–37.
Fujii, N. (1986) “Necessary conditions for a domain optimization problem in elliptic boundary value problems”, SIAM J. Control and Optimization24: 346–360
Giusti, E. (1984) Minimal Surfaces and Functions of Bounded Variation. Birkhauser, Basel.
Gonzales, N.; Massari, U.; Tamarini, I. (1983) “On the regularity of boundaries of sets minimizing perimeter with a volume constraint”,Indiana Univ. Math. J. 32:25–37.
González de Paz, R.B. (1982) “Sur un problème d’optimisation de domaine”, Numer. Funct. Anal. and Optimiz. 5: 173–197.
González de Paz, R.B. (1989) “On the optimal design of elastic shafts”, Math. Modelling and Numer. Anal. (M2AN)23: 615–625.
González de Paz, R.B. (1994) “A relaxation approach applied for domain optimization”, SIAM Journal on Control and Optimization32: 154–169.
González de Paz, R.B. “On the maximization of membrane frequencies: an eigenvalue control problem”, to appear in Numer. Func. Anal. and Optimiz.
González de Paz, R.B.; Tiihonen, T. (1994) “A relaxation-based numerical method applied to domain optimization”, in: Proceedings Conference FEM 50,F inite Element Methods, M. Krizek, P. Neittaanmaki & R. Stenberg (Eds.), Marcel Dekker.
Jensen, R. (1980) “Boundary regularity for variational inequalities”, Indiana Univ. Math. J.29: 495–511.
Kinderlehrer, H.; Stampacchia, G. (1980) An introduction to Variational Inequalities and their Applications. Academic Press, New York.
Kohn, R.V. (1992) “Numerical structural optimization via a relaxed formulation”, in: Proceedings NATO- Université de Montréal Seminar on Shape Optimization and Free Boundaries M. Delfour & G. Sabidussi (Eds.), Kluwer, Dordrecht.
Kohn, R.V.; Strang, G. (1986) “Optimal design and relaxation of variational problemsI-II”, Comm. Pure and Appl. Math.39: 113–377.
Lederman, C. (1995) “An optimization problem in elasticity”, Differential and Integral Equations 8: 2025–2044.
Murat, F.; Simon, J. (1974) “Quelques résultats sur le contrôle par un domaine géométrique”, Rapport de Recherche No. 74-003, Lab. Analyse Numérique, Université Paris VI.
Murat, F.; Tartar, J.L. (1984) Calcul de Variations et Homogénéisation. Cours Ecole d’Eté d’Analyse Numérique, CEA-EDF-INRIA, Eyrolles, Paris.
Pironneau, O. (1984)Optimal Shape Desing for Elliptic Systems. Springer, Berlin.
Pschenichnii, B.N. (1966) “Linear optimal control problems”, J. SIAM Control 4: 577–593.
Simon, J. (1980) “Differentiation with respect to the domain in boundary value problems”, Numer. Funct. Anal. Optim.2: 649–687.
Sokolowski, J.; Zolesio, J.P. (1992)Introduction to Shape Optimization. Springer, Berlin.
Tahraoui, R. (1992) “Contrôle optimal dans les équations elliptiques”, SIAM J. on Control and Optimization 30: 495–521.
Tahraoui, R. (1994) “Maximal torsional rigidity: some qualitative remarks”, Proc. Roy. Soc. of Edinburgh 129 A: 971–994.
Turkington, B. (1983) “On steady vortex flow in two dimensions”, I-II, Comm. In P.D.E. 9: 999–1071.
Valadier, M. “Sous-différentiels d’une borne supérieure et d’une somme continue defonctions convexes”, C.R. Acad. Sc. Paris, Série A, 268.
Visintin, A. (1990) “Non-convex functionals related to multiphase systems”, SIAMJ. Math. Anal.21: 1281–1304.
Zolesio, J.P. (1981) “The material derivative (or speed) method for shape optimization”, in: Optimization of Distributed Parameter Systems, J.Cea & E. Haug (Eds.), Sijthoff and Noordhoff, Alphen aan den Rijn: 1089–1151.
Zolesio, J.P. (1981) “Domain variational formulation for free boundary problems”, in: Optimization of Distributed Parameter Systems, J.Cea & E. Haug (Eds.), Sijthoffand Noordhoff, Alphen aan den Rijn.
Zolesio, J.P. (1994) “Weak shape formulation for free boundary value problems”, Annal. Sc. Norm. Sup. Pisa, Series IV, Vol. XXI: 11–44.
Butazzo, G.; Dal Maso, G. (1993) “An existence result for a class of shape optimization”, Arch. Rational Mech. Anal. 122: 183–195.