Abstract
In [7], Keimel representes the projectable f-rings as continuous sections of Hausdorff sheaves of totally ordered rings. Here, we give a result about the representation of ultraporducts of projectable f-rings in terms of the representation spaces and the stalks of its factors.
References
Bankston, P. (1982) “Some obstacles to duality in topological algebra”, Canadian Journal of Mathematics 34: 80–90.
Bigard, A.; Keimel, K.; Wolfenstein, S. (1977) Groupes et Anneaux Réticulés. Lectures Notes in Mathematics 608, Springer-Verlag, Berlin-Heidelberg.
Burris, S.; Werner, H. (1979) “Sheaf constructions and their elementary properties”, Trans. Amer. Math. Soc. 248: 269–309.
Chang, C.C.; Keisler, H.J. (1978) Model Theory. North-Holland, Amsterdam.
Gillman, L.; Jerison, M. (1960) Rings of Continuous Functions. Van Nostrand, New York.
Guier, J.I. (1999) Produits Booléens de Corps et d’Anneaux de Valuations Réels Clos. Théorie des Modèles et Applications. Thèse de Doctorat, Université Paris VII.
Keimel, K. (1971) The representation of Lattice-Ordered Groups and Rings by Sections of Sheaves. Lectures Notes in Mathematics 248, Springer-Verlag, Berlin-Heidelberg: 1–98.
Macintyre, A. (1973) “Model-completeness for sheaves of structures”, Fundamenta Mathematicae 81: 73–89.
Volger, H. (1979) “Preservation theorems for limits of structures and global sections of sheaves of structures”, Mathematische Zeitschrift 166: 27–53.
Willard, S. (1970) General Topology. Addison-Wesley, Reading Massachusets.