Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Goal problems in gambling theory
PDF (Español (España))

Keywords

gambling theory
stochastic processes
Markov strategies
teoría de jugadores
procesos estocásticos
estrategias de Markov

How to Cite

Hill, T. P. (1999). Goal problems in gambling theory. Revista De Matemática: Teoría Y Aplicaciones, 6(2), 125–144. https://doi.org/10.15517/rmta.v6i2.173

Abstract

A short introduction to goal problems in abstract gambling theory is given, along with statementes of some of the main theorems and a number of examples, open problems and references. Emphasis is on the finite-state, countably-additive setting with such classical objectives as reaching a goal, hitting a goal  infinitely often, staying in the goal, and maximizing the average time spent at a goal.


https://doi.org/10.15517/rmta.v6i2.173
PDF (Español (España))

References

[B1] Blackwell, D.(1965) “Discounted dynamics programming”, Ann. Math. Statist.36: 226–235.

[Br] Brieman, L. (1961) “Optimal gambling systems for favorable games”, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability1, Univ. Calif. Press: 65–78.

[DH1] Demko, S.; Hill, T. (1981) “Decision processes with total-cost criteria”, Ann. Probab. 9: 293–301.

[DH2] Demko, S.; Hill, T. (1984) “On maximizing the average time at a goal”, Stoch. Processes and Their Applic. 17: 349–357.

[DSa] Dubins, L.; Savage, L. (1976) Inequalities for Stochastics Processes: How to Gamble if You Must. Dover, New York.

[DSu] Dubins, L.; Sudderth, W. (1977) “Persistenly Є-optimal strategies”, Math. Operations Research 2125–135.

[F] Feller, W. (1968) An Introduction to Probability Theory and Its Applications, Vol. I, 3rd edition. Wiley, New York.

[Hi] Hill, T. (1979) “On the existence of good Markov strategies”, Trans. Amer. Math. Soc. 247: 157–176.

[HP] Hill, T.; Pestien, V. (1987) “The existence of good Markov strategies for decision processes with general payoffs”, Stoch. Processes and Their Applic. 24: 61–76.

[HvW] Hill, T.; van der Wal, J. (1987) “Monotonically improving limit-optimal strategies in finite-state decision processes”, Math. Operations Research12: 463–473.

[Ho] Howard, R. (1960)Dynamics Programming and Markov Process. Technology Press, Cam-bridge, MA.

[MS1] Maitra, A.; Sudderth, W. (1995) “An introduction to gambling theory and its applications to stochastic games”, preprint.

[MS2] Maitra, A.; Sudderth, W. (to appear) Discrete Gambling and Stochastic Games.

[O] Ornstein, D. (1969) “On the existence of stationary optimal strategies”, Proc. Amer. Math. Soc. 20: 563–569.

[St] Strauch, R. (1967) “Measurable gambling houses”, Trans. Amer. Math. Soc. 126: 64–72.

[Su] Sudderth, W. (1969) “On the existence of good stationary strategies”, Trans. Amer, Math. Soc. 135: 399–415.

Comments

Downloads

Download data is not yet available.