Abstract
This paper deals with the study of an iterative method for solving a variational inclusion of the form 0 ∈ f (x)+F(x) where f is a locally Lipschitz subanalytic function and F is a set-valued map from Rn to the closed subsets of Rn. To this inclusion, we firstly associate a Newton then secondly an Inexact Newton type sequence and with some semistability and hemistability properties of the solution x∗ of the previous inclusion, we prove the existence of a sequence which is locally superlinearly convergent.
References
Aubin, J.-P.; Frankowska, H. (1990) Set Valued–Analysis. Birkhäuser, Boston.
Aubin, J.-P. (1984) “Lipschitz behaviour of solutions to convex minimization problems”, Math. Oper. Res. 9(1): 87–111.
Bierstone, E.; Milman, P.D. (1988) “Semianalytic and subanalytic sets”, IHES Publications Mathématiques 67(1): 5–42.
Bochnak, J.; Coste, M.; Roy, M.-F. (1988)Géométrie Algébrique Réelle. Springer, Berlin.
Bolte, J.; Daniilidis, A.; Lewis, A.S. (2009)“Tame mapping are semis-mooth”, Math. Program. 117(1-2): 5–19.
Bonnans, J.-F. (1994) “Local Analysis of Newton-Type Methods for Variational Inequalities and Nonlinear Programming”, Appl. Math. Optim. 29(2): 161–186.
Burnet, S.; Jean-Alexis, C.; Piétrus, A. (2012)“A multipoint iterative method for semistable solutions”, Appl. Math. E-notes 12: 44–52.
Burnet, S.; Jean-Alexis, C.; Piétrus, A. (2011) “An iterative method for semistable solutions”, RACSAM 105(1): 133–138.
Burnet, S.; Piétrus, A. (2011) “Local analysis of a cubically convergent method for variational inclusions”, Appl. Mat. 38(2): 183–191.
Cabuzel, C.; Piétrus, A. (2008) “Local convergence of Newton’s method for subanalytic variational inclusions”, Positivity 12(3): 523–533.
Cabuzel, C.; Piétrus, A. (2009) “Solving variational inclusions by a method obtained using a multipoint formula”, Rev. Mat. Complut. 22(1): 63–74.
Clarke, F.H. (1990) Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics, Philadelphia PA.
Dedieu, J.-P. (1992) “Penalty functions in subanalytic optimization”, Optimization 26(1-2): 27–32.
Dontchev, A.L.; Hager, W.W. (1994) “An inverse function theorem for set–valued maps”, Proc. Amer. Math. Soc. 121: 481–489.
Dontchev, A.L. (1996) “Local convergence of the Newton method for generalized equation”, C.R.A.S. 322(1): 327–331.
Dontchev, A.L. (1996) “Uniform convergence of the Newton method for Aubin continuous maps”, Serdica Math. J. 22(1): 385–398.
Dontchev, A.L. (1996) “Local Analysis of a Newton-type method based on partial linearization”, in: J. Renegar et al. (Eds.) The Mathematics of Numerical Analysis. 1995 AMS-SIAM Summer Seminar in Applied Mathematics, Providence RI: AMS., Lect. Appl. Math. 32: 295–306.
Dontchev, A.L.; Quincampoix, M.; Zlateva, N. (2006) “Aubin criterion for metric regularity”, J. of Convex Analysis 13(2): 281–297.
Dontchev, A.L.; Rockafellar, R.T. (2009) Implicit Functions and Solution Mappings. Springer Monographs in Mathematics.
Ferris, M.C.; Pang, J.S. (1997) “Engineering and economic applications of complementary problems”, SIAM Rev. 39(4): 669–713.
Gabrielov, A.M. (1968) “Projection of semianalytic sets”, Funkcional. Anal. Prilozen. 2(4): 18–30.
Geoffroy, M.H.; Hilout, S.; Pietrus, A. (2003) “Acceleration of convergence in Dontchev’s iterative method for solving variational inclusions”, Serdica Math. J. 29(1): 45–54.
Geoffroy, M.H.; Pietrus, A. (2003) ”A superquadratic method for solving generalized equations in the Hölder case”, Ricerche Mat. 52(2): 231–240.
Geoffroy, M.H.; Hilout, S.; Pietrus, A. (2006) “Stability of a cubically convergent method for generalized equations”, Set-Valued Anal. 14(1): 41–54.
Hironaka, N. (1973) “Subanalytic sets”, Number Theory, Algebraic Geometry and Commutative Algebra, in honour of Y. Akizuki Kinokuniya, Tokyo: 453–493.
Izmailov, A.F.; Solodov, M.V. (2010) “Inexact Josephy-Newton framework for generalized equations and its applications to local analysis of Newtonian methods for constrained optimization”, Comput. Optim. Appl. 46: 347–368.
Jean-Alexis, C. (2006) “A cubic method without second order derivative for solving variational inclusions”, C. R. Acad. Bulgare Sci. 59(12): 1213–1218.
Lojasiewicz, S. (1964) Ensembles Semi-Analytiques. IHES, Mimeographed notes.
Mordukhovich, B.S. (1993) “Complete characterization of openness metric regularity and lipschitzian properties of multifunctions”, Trans. Amer. Math. Soc. 340: 1–36.
Mordukhovich, B.S. (2006) Variational Analysis and Generalized Differentiation. I: Basic Theory. Vol. 330, Springer.
Piétrus, A. (2000) ”Generalized equations under mild differentiability conditions”, Rev. Real. Acad. Ciencias de Madrid 94(1): 15–18.
Piétrus, A. (2000) “Does Newton’s method for set–valued maps converges uniformly in mild differentiability context?”, Rev. Colombiana. Mat. 32: 49–56.
Qi, L.; Sun, J. (1993) “A nonsmooth version of Newton’s method”, Math. Program. 58: 353–367.
Robinson, S.M. (1979) “Generalized equations and their solutions, part I: basic theory”, Math. Program. Study 10: 128–141.
Robinson, S.M. (1980)“Strongly regular generalized equations”, Math Oper. Res. 5: 43–62.
Robinson, S.M. (1982) “Generalized equations and their solutions, part II: Application to nonlinear programming”, Math. Program. Study 19: 200–221.
Rockafellar, R.T. (1984) “Lipschitzian properties of multifonctions”, Nonlinear Analysis 9: 867–885.
Rockafellar, R.T.; Wets, R.J.B. (1988) Variational analysis. A Series of Comprehensives Studies in Mathematics 317, Springer.
Van Den Dries, L.; Miller, C. (1996) ”Geometric categories and o-minimal structures”, Duke Math. J. 84: 497–540