Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Un algoritmo paralelo para el problema del conjunto independiente
PDF (Español (España))

Keywords

Graph
Independent Set
Independence Number
Stability Number
Parallel Algorithm
Gráfica
Conjunto Independiente
Número de Independencia
Número de Estabilidad
Algoritmo Paralelo

How to Cite

López Bracho, R., & Ortuño Sánchez, M. P. (2000). Un algoritmo paralelo para el problema del conjunto independiente. Revista De Matemática: Teoría Y Aplicaciones, 7(1-2), 125–134. https://doi.org/10.15517/rmta.v7i1-2.185

Abstract

A set S of vertices in a graph G is independent if there does not exist two adjacent vertices in S, that is, the subgraph of G induced by S does not have edges. In this work we present a parallel algorithm that permits to obtain all maximal independent sets in a graph. We present the foundations of the algorithm and some properties.

https://doi.org/10.15517/rmta.v7i1-2.185
PDF (Español (España))

References

Berge, C. (1970) Graphes et Hypergraphes. Dunod, Paris.

Christofides, N. (1975) Graph Theory: An Algorithmic Approach. Academic Press, New York.

Füredi, Z. (1987) “The ‘number of maximal independent sets in connected graphs”, Journal of Graph Theory 11(4): 463–470.

Garey, M. R.; Johnson, D.S. (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co. Publishers, San Francisco.

Golumbic, M. C. (1980) Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York.

Griggs, J. R.; Grinstead, C. M.; Guichard, D.R. (1988) “The number of maximal independent sets in a connected graph”, Discrete Mathematics 68: 211–220.

Gutiérrez, M. A. (1991) La Técnica de Recocido Simulado. Tesis doctoral, UNAM, México.

Harary, F. (1972) Graph Theory. Addison Wesley, Reading MS.

Neumann-Lara, V. (1985) “Introducción a la teoría de gráficas”, IV Coloquio del Departamento de Matemáticas, CINVESTAV, México.

Papadimitriou, C. H.; Steiglitz, K. (1982) Combinatorial Optimization: Algorithms and Complexity. Prentice Hall Inc., Englewood Cliffs N.J.

Syslo, M.; Deo, N.; Kowalik, J. (1983) Discrete Optimization Algorithms with Pascal Programs. Prentice Hall Inc., Englewood Cliffs N.J.

Comments

Downloads

Download data is not yet available.