Abstract
We five a definition of Almost Periodic Functions on RN. Following that definition we show some topological properties for this functions. At the end of this paper we proof some algebraic properties by using the structure theorem. We give the proof of this result (structure theorem) in the appendix.
References
[Ca] Castro, E. (1994) “Funciones periódicas, cuasi periódicas y clasificación de funciones”, Revista de Matemática: Teoría y Aplicaciones 1(1): 73–86.
[CA1] Castro, E.; Arguedas, V. (1998) “Funciones ∗-periódicas ”, Vl Encuentro Centroamericano de Investigadores Matemáticos, Managua: 41–49.
[Co] Cooke, R. (1981) “Almost periodic functions”, Amer. Math. Monthly 88(7): 515–525.
[Cor] Corduneanu, C. (1989) Almost Periodic Functions. Chelsea Publishing Company, New York.
[Be] Besicovitch, A.S. (1954) Almost Periodic Functions. Dover Publications Inc, New York.
[Bo] Bohr, H. (1951) Almost Periodic Functions. Chelsea Publishing Company, New York.
[Fi] Fink, A.M. (1977) Almost Periodic Diferential Ecuations. Lecture Notes in Mathematics 377, Springer Verlag, New York.
[Mu] Muntean, I. (1990) “Analiza functionala: capitole speciale” , Universitatea Babes-Bolyai, Cluj-Napoca.
[CA2] Castro, E.; Arguedas, V. “Algunos aspectos teóricos de las funciones casi periódicas N-dimensionales-II”, CIMPA, Universidad de Costa Rica, San José.
[Fis] Fischer, A. (1996) “Structure of Fourier exponents of almost periodic functionas and periodicity of almost periodic functions”, Mathematica Bohemia 121(3): 249–262.
[Bl] Blot, J. (1996) “Variational methods for the almost periodic lagrangian oscilations”, Cahiers Eco & Maths C.E.R.M.S.E.M.44.
[Bo2] Bochner, S. (1992) Collected Papers of Salomon Bochner, Part 2. American Mathematical Society, providence RI.