Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Dynamics of a two-dimensional discrete-time SIS model
PDF (Español (España))

Keywords

Susceptible-Infective-Susceptible (SIS)
difference equations
bifurcation
basic reproductive number (R0)
asymptotic limiting equation
Susceptible-Infeccioso-Susceptible (SIS)
ecuaciones en diferencias
bifurcación
número básico reproductivo (R0)
ecuación limitante asintótica

How to Cite

Barrera, J. H., Cintrón Arias, A., Davidenko, N., Denogean, L. R., & Franco González, S. R. (2000). Dynamics of a two-dimensional discrete-time SIS model. Revista De Matemática: Teoría Y Aplicaciones, 7(1-2), 199–216. https://doi.org/10.15517/rmta.v7i1-2.190

Abstract

We analyze a two-dimensional discrete-time SIS model with a non-constant total population. Our goal is to determine the interaction between the total population, the susceptible class and the infective class, and the implications this may have for the disease dynamics. Utilizing a constant recruitment rate in the susceptible class, it is possible to assume the existence of an asymptotic limiting equation, which enables us to reduce the system of, two-equations into a single, dynamically equivalent equation. In this case, we are able to demonstrate the global stability of the disease-free and the endemic equilibria when the basic reproductive number (R0) is less than one and greater than one, respectively. When we consider a non-constant recruitment rate, the total population bifurcates as we vary the birth rate and the death rate. Using computer simulations, we observe different behavior among the infective class and the total population, and possibly, the occurrence of a strange attractor.

https://doi.org/10.15517/rmta.v7i1-2.190
PDF (Español (España))

References

Linda J. S. Allen and Amy M. Burgin, Comparison of Deterministic and Stochastic SIS and SIR Models, Technical Report No. 98-003, (1998)

L. J. S. Allen, Some Discrete-Time SI, SIR, and SIS Epidemic Models, Math. Bios., 124 (1994), pp. 83-105.

R. M. Anderson and M. May, Infectious Diseases of Humans, Oxford University Press, Oxford (1991).

Carlos Castillo-Chavez and Horst R. Theime, Asymptotically Autonomous Epidemic Models.

P. Cull, Stability of Discrete One-Dimensional Population Models, Bul. Math. Biol., 50 (1988), pp. 67-75.

P. Cull, Local and Global Stability for Population Models, Biol. Cybern., 54 (1986), pp. 141-149.

P. Cull, Global Stability of Population Models, Bul. Math. Biol., 43 (1981), pp. 47-58.

L. Edelstein-Keshet, Mathematical Models in Biology, The McGraw-Hill Co., Massachussets, (1988).

J.Guckenheimer and Phillip Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York, (1997)

J. Jacquez, C. Simon and J. Koopman, Core Groups and R0s for Subgroups in Heterogeneous SIS and SI Models, Epidemic Models: Their Structure and Relation to Data, Cambridge University Press, New York, (1995), pp. 279-301.

C. C. McCluskey and J.S. Muldowney, Bendixson-Dulac Criteria for Difference Equations, J. Dyn. Diff. Eq., 10 (1988), pp. 567-576.

S.H. Strogatz, Nonlinear Dynamics and Chaos. Addison-Wesley Publishing Co., Massachussets, (1995)

Comments

Downloads

Download data is not yet available.