Abstract
The problem of approximation of the characteristic functions defined by a PII in near intervals is studied. We establish some general properties of these functions and of the associated complex matingales, which, with the aid of the decomposition results in [4] and [5], lead to approximate formula of the Lévy-Khintchine type. As a consequence, we obtain the exact law for PII processes in continuous time
References
Nelson, E. (1987) Radically Elementary Probability Theory. Princeton University Pres.
Lobo, J. (1995) “Estudio en tiempo discreto de los procesos puntuales de incrementos condicionalmente independientes”, Revista de Matemática: Teoría y Aplicaciones 2(2): 9–16.
Lobo, J. (1985) Processus á Accroissements Indépendants et Méthode des Semimartingales. Thèse de 3-ème Cycle, Université de Paris VI.
Lobo, J. (1998) “Desccomposición de procesos de incrementos independientes en casi intervalos”, Revista de Matemática: Teoría y Aplicaciones 5(2): 163–176.
Lobo, J. (1999) ”Casi-ortogonalidad y proximidad en L2 de martingalas PII en casi intervalos”, Revista de Matemática: Teoría y Aplicaciones 6(1): 27–33.
Albeverio (1986) Non Standard Methods in Stochastic Analysis and Mathematical Physics. Academic Press, New York.
Doob, J.L. (1954) Stochastic Processes. John Wiley and Sons, New York.
Gihman, I.I.; Skorohod, A.V. (1980) Introduction à la Théorie des Processus Aléatoires. Mir, Moscú.
Jacod, J. (1980) Calcul Stochastique et Problémes de Martingales. Lecture Notes in Mathematics, Springer Verlag, Berlin.
Stroyan, K.D.; Bayod, J.M. (1986) Foundations of Infinitesimal Stochastic Analysis. North Holland, Amsterdam.
Diener, F.; Reeb, G. (1989) Analyse Non Standard. Hermann, Paris.