Abstract
In this work we investigate the stability properties of a convex symmetric timeinvariant third order matrix's polytope depending on a real positive parameter r. We apply the obtained results to the calculation of the real stability radius of a third order matrix under a certain class of affine perturbations
References
[But85] Butkovskii, A.G. (1985) Fazabie partreti uprabliaemij dinamicheskij sistem. Editorial Nauka. Moscú (In Russian).
[Doy82] Doyle, J.C. (1982) “Analysis of feedback systems with structured uncertainties”, IEEE Proc., Part D 129: 242–250.
[HinPri86] Hinrichsen, D,; Pritchard, A.J. (1986) “Stability radii of linear systems”, Systems & Control Letters 7: 1–10.
[HinPri86a] Hinrichsen, D.; Pritchard, A.J. (1986) “Stability radius for structured perturbations and the algebraic Riccati equation”, Systems & Control Letters 8: 105–113.
[HinPri2000] Hinrichsen, D.; Pritchard, A.J. (2000) Dynamical Systems Theory. (manuscript, February, 2000).
[Lan69] Lancaster, P. (1969) Theory of Matrices. Academic Press, Inc. New York, London.
[Nic98] Nicado, M. (1998) Estudio del Comportamiento de Sistemas de Control Automático de Tercer Orden con Perturbaciones Estacionarias y No Estacionarias. Tesis de Doctorado, Universidad Central de las Villas, Santa Clara, Cuba.
[PacDoy93] Packard, A.; Doyle, J.C. (1993) “The complex structured singular value”, Automatica 29(1): 71–109.
[QBRDYD95] Qiu, L.; Bernhardsson, B.; Rantzer, A.; Davison, E.J.; Young, P.M.; Doyle, J.C. (1995) “A formula for computation of the real stability radius”, Automatica 31: 879–890.
[VanL85] Van Loan, C. (1985) “How near is a stable matrix to an unstable matrix?”, Contemporary Math. 47: 465–477.