Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
The octopuses species
PDF (Español (España))

Keywords

combinatoria enumerativa
funciones generatrices
especies combinatorias
enumerative combinatorics
generating functions
combinatorial species

How to Cite

Pariguan, E., & Rodríguez, J. S. (2015). The octopuses species. Revista De Matemática: Teoría Y Aplicaciones, 22(2), 275–291. https://doi.org/10.15517/rmta.v22i2.20835

Abstract

The main goal of this paper is introduce the species of octopuse in enumerative combinatoricss. We also prove the validity of some combinatorial equations suggested by Bergeron et al. in [3].
https://doi.org/10.15517/rmta.v22i2.20835
PDF (Español (España))

References

Aigner, M. (2007) A course in Enumeration. Graduate Texts in Mathematics, vol. 238, Springer Verlag, Berlin.

Bergeron, F. (1990) “Combinatoire del polynômes orthogonaux classiques: Une approche unifiée”, European Journal of Combinatorics 11(5): 393–401.

Bergeron, F.; Labelle, G.; Leroux, P. (1998) Combinatorial species and tree-like structures 67. Cambridge University Press, United Kingdom.

Cartier, P.; Foata, D. (1969) Problèmes Combinatoires de Commutation et Réarrangements/Commutation and Rearrangements. Lecture Notes in Mathematics 85, Springer Verlag, Berlin.

Díaz, R.; Pariguan, E. (2009) “Super, quantum and non-commutative species”, Afr. Diaspora J. Math. (N.S.) 8(1): 90–130.

Joyal, A. (1981) “Une théorie combinatoire des séries formelles”, Advances in Mathematics 42(1): 1–82.

Lando, S.K. (2003) Lectures on Generating Functions. Student Mathematical Library, vol. 23, American Mathematical Society, Providence RI.

Mac Lane, S. (1998) Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5, Springer Verlag, Berlin.

Mullin, R.; Rota, G.-C. (1970) “On the foundations of combinatorial theory III. Theory of binomial enumeration”, in: B. Harris (Ed.) Graph Theory and its Applications, Academic Press, New York: 167–213.

Rota, G.-C. (1964) “On the foundations of combinatorial theory I. Theory of Möbius functions”, Z. Wahrscheinlichkeitstheorie (Probability Theory and Related Fields) 2(4): 340–368.

Rota, G.-C.; Taylor, B.D. (1994) “The classical umbral calculus”, SIAM Journal on Mathematical Analysis 25(2): 694–711.

Stanley, R.P. (1999) “Enumerative combinatorics”, Cambridge Studies in Advanced Mathematics 62(2): 51–100.

Wehrhahn, K.H. (1992) Combinatorics: An Introduction. Carslaw Publications, Australia.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2015 Revista de Matemática: Teoría y Aplicaciones

Downloads

Download data is not yet available.