Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
SC-System of convergence theory and foundations
PDF

Keywords

particle swarm optimization
unconstrained optimization
constrained optimization
multiobjective optimization
fuzzy numbers
optimización por enjambres de partículas
optimización sin res- tricciones
optimización con restricciones
optimización multiobjetivo

How to Cite

De-Los-Cobos-Silva, S. G. (2015). SC-System of convergence theory and foundations. Revista De Matemática: Teoría Y Aplicaciones, 22(2), 341–367. https://doi.org/10.15517/rmta.v22i2.20845

Abstract

In this paper a novel system of convergence (SC) is presented as well as its fundamentals and computing experience. An implementation using a novel mono-objetive particle swarm optimization (PSO) algorithm with three phases (PSO-3P): stabilization, generation with broad-ranging exploration and generation with in-depth exploration, is presented and tested in a diverse benchmark problems. Evidence shows that the three-phase PSO algoritm along with the SC criterion (SC-PSO-3P)can converge to the global optimum in several difficult test functions for multiobjective optimization problems, constrained optimization problems and unconstrained optimization problems with 2 until 120,000 variables.

https://doi.org/10.15517/rmta.v22i2.20845
PDF

References

Coello Coello, C.A.; Lamont, G.B.; Veldhuizen, D.A. van (2007) Evolutionary Algorithms for Solving Multi-Objective Problems, 2d. Ed. Springer, New York.

de-los-Cobos-Silva, S.G. (2014) “SC: sistema de convergencia: Condiciones y propiedades”, Titular: Universidad Autónoma Metropolitana, Registro (copyright) 03-2014-030511365700-01, 07 de marzo de 2014, Instituto Nacional del Derecho de Autor, Secretaria de Educación Publica, México.

Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. (2002) “Scalable multi- objective optimization test problems”, in: Proceedings of the Congress on Evolutionary Computation (CEC 2002), IEEE Press, Honolulu: 825–830.

Dubois, D.; Prade, H. (1978) “Operations on fuzzy numbers”, International Journal of Systems Science 9(6): 613–626.

Gavana, A. (2007?) “Global optimization benchmarks and AMPGO. Test functions”, in: http://infinity77.net/global_optimization/

Hedar, A.R. (2007?) “Global optimization test problems”, in: http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/go.htm

Kalami Heris, S.M. (s.f.) http://www.kalami.ir

Kennedy, J.; Eberhart, R.C.; Shi, Y. (2001) Swarm Intelligence. Morgan Kaufmann, San Francisco.

Liang, J.J.; Runarsson, T.P.; Mezura-Montes, E.; Clerc, M.; Suganthan, P.N.; Coello Coello, C.A.; Deb, K. (2006) “Problem definitions and evaluation criteria for the CEC 2006, special session on constrained real-parameter optimization”, Technical Report, IEEE Congress on Evolutionary Computation, 24 pp.

Liou, T.S.; Wang, M.J.J. (1992) “Ranking fuzzy numbers with integral value”, Fuzzy Sets and Systems 50(3): 247–255..

Michalewicz, Z.; Fogel, D.B. (1998) How to Solve It: Modern Heuristics, 2nd. Edition. Springer, Berlin.

Surjanovic, S.; Bingham, D. (2013) “Virtual library of simulation experiments: test functions and datasets”, Simon Fraser University, in: http://www.sfu.ca/~ssurjano/optimization.html

Zitzler, E.; Deb, K.; Thiele, L. (2000) “Comparison of multiobjective evolutionary algorithm: Empirical results", Evolutionary Computation 8(2): 173–195.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2015 Revista de Matemática: Teoría y Aplicaciones

Downloads

Download data is not yet available.