Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Parallelization of a quantum-classic hybrid model for Nanoscale Semiconductor devices
PDF
PS
DVI

Keywords

Parallelization
Shared memory paradigm
Schrödinger equation
Drift-Difusion system
Subband model
Nanotransistor
Paralelezación
Paradigma de Memoria Compartida
Ecuación de Schrödinger
Sistemas Drift-Difusion
Modelo Subband
Nanotubos

How to Cite

Salas, O., Lanucara, P., Pietra, P., Rovida, S., & Sacchi, G. (2011). Parallelization of a quantum-classic hybrid model for Nanoscale Semiconductor devices. Revista De Matemática: Teoría Y Aplicaciones, 18(2), 231–248. https://doi.org/10.15517/rmta.v18i2.2096

Abstract

The expensive reengineering of the sequential software and the difficult parallel programming are two of the many technical and economic obstacles to the wide use of HPC. We investigate the chance to improve in a rapid way the performance of a numerical serial code for the simulation of the transport of a charged carriers in a Double-Gate MOSFET. We introduce the Drift-Diffusion-Schrödinger-Poisson (DDSP) model and we study a rapid parallelization strategy of the numerical procedure on shared memory architectures.

https://doi.org/10.15517/rmta.v18i2.2096
PDF
PS
DVI

References

Ben Abdallah, N.; Mhats, F. (2004) “On a Vlasov–Schrödinger–Poisson model”, Comm.Partial Differential Equations 29(1-2): 173–206.

OpenMP Architecture Review Board. OpenMP Application Program Interface. Version 2.5, May 2005.

Brezzi, F.; Marini, L.D.; Pietra, P. (1987) “Méthodes d’éléments finis mixtes et schéma de Scharfetter–Gummel”, C.R. Acad. Sci. Paris Sér. I 305: 599–604.

Davies, J.H. (1998) The Physics of Low Dimensional Semiconductors. Cambridge University Press.

Degond, P.; Levermore, C.D.; Schmeiser, C. (2004) “A note on the Energy-Transport limit of the semiconductor Boltzmann equation, Transport in transition regimes”, IMA Vol. Math. Appl., Springer, 135: 137–153.

Golse, F.; Poupaud, F. (1992) “Limite fluide des équations de Boltzmann des semiconducteurs pour une statistique de Fermi–Dirac”, Asymptotic Analysis 6: 135–169.

Greenbaum, A. (1986) “Routines for Solving Large Sparse Linear Systems (SLAP)”. Lawrence Livermore Nat. Laboratory, Livermore Computing Center, USA.

Gummel, H.K. (1964) “A self-consistent iterative scheme for one-dimensional steady state transistor calculations", IEEE Trans. on Elec Dev. 11(10): 455–465.

Nier, F. (1990) “A stationary Schrödinger–Poisson system arising from the modelling of electronic devices", Forum Math. 2(5):489–510.

Pietra, P.; Vauchelet N. (2007) “Modeling and simulations of the diffusive transport in a nanoscale double-gate MOSFET”, Technical Report 10PV07/10/0, IMATI-CNR, Pavia.

Poupaud, F. (1981) “Diffusion approximation of the linear semiconductor Boltzmann equation: analysis of boundary layers”, Asymptotic Analysis 4: 293–317.

Vauchelet, N. (2006) Modélisation Mathématique du Transport Diffusif de Charges Partiellement Quantiques. Ph.D. thesis, Université Paul Sabatier, Toulouse.

Vinter, B.; Weisbuch, C. (1991) Quantum Semiconductor Structures. Academic Press.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2011 Oscar Salas, Piero Lanucara, Paola Pietra, Sergio Rovida, Giovanni Sacchi

Downloads

Download data is not yet available.