Abstract
Under the analysis of signals disturbed by noise, in this paper we propose a working methodology aimed to seize the best estimate of combining Kalman filtering with the characterization that is achieved by applying a multiresolution analysis (MRA) using wavelets. From the standpoint of Kalman filtering this combined procedure is quasi-optimal, but the change to be made allows the simultaneous implementation of a scheme of wavelet denoising; with this decreases the computational cost of applying both procedures separately. Our proposal is to process the signal by successive non-overlapping intervals, combining the process for calculating the optimal filter with a MRA using the Haar wavelet. The method takes advantage of the combined use of both tools (Kalman-Haar) and is free from edge problems related to the signal segmentation.
References
D’Attellis, C.E. (1981) Estimadores Óptimos y sus Aplicaciones. CONICET, Argentina.
Hirchoren, G.A.; D’Attellis, C.E. (1998) “Estimation of fractal signals using wavelets and filter banks”, IEEE Trans. on Signal Processing 46(6): 1624–1630.
Hirchoren, G.A.; D’attellis, C.E. (1999) “Estimation of fractional brownian motion with multiresolution Kalman filter banks”, IEEE Trans. on Signal Processing 47(5): 1431–1434.
Kalman, R.E. (1960) “A new approach to linear filtering and prediction problems”, Trans. ASME-Journal of Basic Engineering 82:35–45.
Kalman, R.E.; Bucy, R.S. (1961) “New results in linear filtering and prediction theory”, Trans. ASME-Journal of Basic Engineering: 95– 108.
Postalcioglu, S.; Erkan, K.; Bolat, E.D. (2005) “Comparison of Kalman filter and wavelet filter for denoising”, en: IEEE Conference Proceedings International Conference on Neural Network and Brain, Vol 2, Beijing, China: 951–954.
Renaud, O.; Starck, J.; Murtagh, F. (2005) “Wavelet-based combined signal filtering and prediction”, IEEE Trans. on Sytems, Man, and Cybernetics, Part B: Cybernetics 35(6): 1241–1251.
Walmut, D.F. (2002) An Introduction to Wavelet Analysis. Birkhaüser, Boston.
Zhao, J.; Ma, H.; You, Z.; Umeda, M. (2001) Lecture Notes in Computer Science: Multiscale Kalman filtering of fractal signals using wavelet transform, Springer-Verlag Berlin, Heidelberg: 305–313.