Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Co-occurrence Matrix and fractal dimension for image segmentation
PDF (Español (España))

Keywords

Image segmentation
texture
fractal dimension
co-occurrence matrix
Segmentación de Imágenes
texturas
dimensión fractal
matriz de co-occurencia

How to Cite

Marrón, B. S. (2012). Co-occurrence Matrix and fractal dimension for image segmentation. Revista De Matemática: Teoría Y Aplicaciones, 19(1), 49–63. https://doi.org/10.15517/rmta.v19i1.2104

Abstract

One of the most important tasks in image processing problem and machine vision is object recognition, and the success of many proposed methods relies on a suitable choice of algorithm for the segmentation of an image. This paper focuses on how to apply texture operators based on the concept of fractal dimension and cooccurence matrix, to the problem of object recognition and a new method based on fractal dimension is introduced. Several images, in which the result of the segmentation can be shown, are used to illustrate the use of each method and a comparative study of each operator is made.

https://doi.org/10.15517/rmta.v19i1.2104
PDF (Español (España))

References

Chaudhuri, B.; Sarkar, N. (1995) “Texture segmentation using fractal dimension”, IEEE Trans. P.A.M.I. 25 (17): 72–76.

Kuklinski, W. (1994) “Utilization of fractal dimension in images for plant recognition”, Fractals 2(3): 363–369.

Haralick, R.M.; Shanmugam, K.; Denstein, I. (1973) “Textural features for image classification”, IEEE Trans. Syst. Man Cybern. 3(6):610–621.

Haralick, R.M. (1979) “Statistical and structural approaches to texture”, Proc. 4th Int. Joint Conf. Pattern Recog.: 45–60.

Haralick, R.M.; Shapiro, L. (1992) Computer and Robot Vision, Vol.1. Addison-Wesley, Massachusetts.

Marrón, B. (2004) Modelos Markovianos en Segmentación de Imágenes. Tesis de Maestría en Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina.

Noviranto, S.; Suzuki, Y.; Maeda, J. (2003) “Near optimum estimation of local fractal dimension for image segmentation”, Pattern Recognition Letters 24: 365–374.

Pentland, A. (1984) “Fractal-based description of natural scenes”, IEEE Trans. P.A.M.I. 6(6): 661–674.

Russ, J. C. (1998) The Image Processing Handbook, Third edition. U.S.A. CRC & IEEE Press.

Sarkar, N.; Chaudhuri, B. (1992) “An efficient approach to estimate fractal dimension of textural images”, Pattern Recognition 25(9):1035–1041.

Sonka, M.; Hlavac, V.; Boyle, R. (1999) Image Processing, Analysis and Machine Vision, Second edition. PWS Publishing, Boston.

Zwiggelaar, R.; Bull, C. (1994) “The use of fractal dimension in images for plant recognition”, in: M.M. Novak (Ed.) Fractal Reviews in the Natural and Applied Science, Chapman & Hall, New York: 204–213.

Comments

Downloads

Download data is not yet available.