Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Creation of a model of pollutans diffusion in soil-water system using a cellular automata
PDF (Español (España))

Keywords

cellular automata
pollutant diffusion
soil-water system
porous media
autómata celular
difusión de contaminantes
sistema suelo-agua
medio poroso

How to Cite

Merino-Castro, G. (2011). Creation of a model of pollutans diffusion in soil-water system using a cellular automata. Revista De Matemática: Teoría Y Aplicaciones, 18(1), 63–76. https://doi.org/10.15517/rmta.v18i1.2115

Abstract

In this paper is presented a developed model for a pollutant diffusion in a soil-water system, for specific conditions in a real study area. A model that allows the observations of the pollutant flow in the soil-water system and its behavior and interaction with the different system elements, is searched with the purpose of orientate and support the processes and techniques application for the pollutant soil and water remediation. The basic model conditions are: 1) The pollutant is introduced to the soil. 2) The pollutant flows from the soil to the water. 3) The introduced pollutant concentration is variable during the process. 4) The pollutant may saturate the soil. 5)The pollutant is adsorbed by the soil. 6) The model is developed in 2D, with the possibility to be expanded to 3D. The model uses a cellular automata that contains different zones with their own function rules. There are four considerate zones: i) Introduction of the pollutant zone. ii) Soil zone (a porous media). iii) Soil-water interaction zone. iv) Water zone.

https://doi.org/10.15517/rmta.v18i1.2115
PDF (Español (España))

References

Chopard, B.; Droz, M. (1998) Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge MA.

Chen, S.; Diemer, K.; Doolen, G.D.; Eggert, K.; Fu, C.; Gutman, S.; Travis, B.J. (1991) “Lattice gas automata for flow through porous media”, Physica D: Nonlinear Phenomena 47(1-2): 72–84.

Bagnoli, F.; Chopard, B.; Droz, M.; Frachebourg, L. 1992) “Critical behaviour of a diffusive model with one adsorbing state”, Journal of Physics A: Mathematical and General 25(5): 1085–1091.

Frisch, U.; d’Humières, D.; Hasslacher, B.; Lallemand, P.; Pomeau, Y.; Rivet, J.P. (1990) “Lattice gas hydrodynamics in two and three dimensions”, in: G.D. Doolen (Ed.) Lattice Gas Methods for Partial Dif-

ferential Equations. Addison-Wesley Publishing Company, Redwood City CA: 77–135.

Pape, H.; Clauser, C.; Iffland, J. (1999). “Permeability prediction based on fractal pore-space geometry”, Geophysics 64(5): 1447–1460.

Liu, G.; Zheng, C.; Gorelick, S.M. (2004), “Limits of applicability of the advection-dispersion model in aquifers containing connected high-conductivity channels”, Water Resources Research 40: 1–19.

Merino, G.; Mart́ın, M.; Sánchez, M.; Garbi, C.; Alonso, R. (2002) “Utilización de un Autómata Celular en el modelado de un proceso de descontaminación de aguas”, in: E. Oñate, F. Zárate, G. Ayala, S. Botello & M.A. Morelos (Eds.) Métodos Numéricos en Ingeniería y Ciencias Aplicadas, Vol. 2, CIMNE, Barcelona. Disponible en http://www.cimne.upc.es/congress/gto2002/II%20Foro/PDF/V%20II/Procesos%20Industriales/Merino1201.pdf

Merino, G.; Bustillos, O. (1998) “Simulation of pollutant diffusion between two media by means of cellular automata”, VII International Congress of Ecology, Florence, Italy.

Merino, G.; Bustillos, O. (1996) “Autómata celular con diferentes reglas locales”, XXIX Congreso de la Sociedad Matemática Mexicana.

Rieu, M.; Sposito, G. (1991) “Fractal fragmentation, soil porosity and soil water properties: I. Theory”, Soil Sci. Soc. Am. J. 55: 1231–1238.

Benney, P.; Droz, M.; Frachebourg, L. (1990) “On the critical behaviour of cellular automata models of non-equilibrium phase transitions”, Phys. A: Math. Gen. 23: 3353–3359.

Gaylor, R.J.; Nishidate, K. (1996) Modeling Nature: Cellular Automata Simulations with Mathematica. Springer-Verlag, New York.

Dickman, R.; Burschka, M.A. (1988) “Nonequilibrium critical poisoning in a single-species model”, Physics Letters A 127(3): 132–137.

Chen, S.; Chen, H.; Doolen, G.D. (1989) “How the lattice gas model for the Navier-Stokes equation improves when a speed is added”, Complex Systems 3: 243–251.

Chen, S.; She, Z.; Harrison, L.C.; Doolen, G.D. (1989) “Optimal initial condition for lattice gas hydrodynamics”, Phys. Rev. A 39: 2725–2727 .

Di Gregorio, S.; Serra, R.; Villani, M. (1997) “A cellular autómata model of soil bioremediation”, Complex Systems 11: 31–54.

Toffoli, T.; Margolous, N. (1991) Cellular Automata Machines. A New Environmental for Modeling, Fifth printing. MIT Press, Cambridge MA.

Pachepsky, Ya.A.; Korsunskaia, L.P.; Hajnos, M. (1996) “Fractal parameters of soil pore surface area under a developing crop”, Fractals 4(1): 97–104.

Efendiev, Y.; Durlofsky, L.J. (2003) “A generalizad convection-diffusion model for subgrid transport in porous media”, SIAM Multi-scale Modeling and Simulation 1(3): 504–526.

Comments

Downloads

Download data is not yet available.