Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Métodos de optimización del stress. Comparaciones usando disimilitudes tipo intervalo
PDF (Español (España))

Keywords

Stress
Interscal
simulated annealing
Stress
Interscal
sobrecalentamiento simulado

How to Cite

Castillo Elizondo, W., González, J., & Rodríguez, O. (2003). Métodos de optimización del stress. Comparaciones usando disimilitudes tipo intervalo. Revista De Matemática: Teoría Y Aplicaciones, 10(1-2), 1–10. https://doi.org/10.15517/rmta.v10i1-2.220

Abstract

By the use of simulated annealing it is defined the algorithm MDSI-SS for the optimization of Stress defined by Donoeux and Masson [6] for interval-type dissimilarities.On three data sets it is compared the value of stress obtained by MDSI-SS and INTERSCAL (the later is the algorithm proposed by Rodríguez et al. [12]).

https://doi.org/10.15517/rmta.v10i1-2.220
PDF (Español (España))

References

Aarts, E.; Korst, J. (1989) Simulated Annealing and Boltzmann Machines. John Wiley & Sons, Chichester.

Bock, H-H.; Diday, E. (eds.) (2000) Analysis of Symbolic Data. Exploratory Methods for Extracting Statistical Information from Complex Data. Springer Verlag, Heidelberg.

Borg, I.; Groenen, P. (1997) Modern Multidimensional Scaling. Springer, New York.

Cazes, P.; Chouakria, A.; Diday, E.; Schektman, Y. (1997) “Extension de l’analyse en composantes principales à des données de type intervalle”, Rev. Statistique Appliquée 45(3): 5–24.

Cox, T.; Cox, M. (1994) Multidimensional Scaling. Chapman & Hall, London.

Denoeux, T.; Masson, M. (1999) “Multidinsional scaling of interval-valued dissimilarity data”. Université de Technologie de Compiègne, France.

Diday, E. (1998) “Symbolic data analysis: a mathematical framework and tool for data mining”, in: A. Rizzi, M. Vichi & H. Bock (Eds.): Advances in Data Science and Classification, Springer-Verlag, Heidelberg: 409–416.

Diday, E. (1999) An Introduction to Symbolic Data Analysis and its Application to the Sodas Project: Purpose, History and Perspective. Paris IX–Dauphine University, France.

Gower, J.C. (1966) “Some distances properties of laten root and vector methods using multivariate analysis”, Biometrika, 53: 325–338.

Trejos J. et al. (2000) “Application of simulated annealing in some multidimensional scaling problems”, in: Kiers et al. (Eds.): Data Analysis, Classification and Related Methods. Springer, Heidelberg: 297–302.

Raju, S.R.K. (1997) “Symbolic data analysis in cardiology”, in: E. Diday & K.C. Gowda (Eds.): Symbolic Data Analysis and its Applications, CEREMADE, Paris: 245–249.

Rodŕıguez, O.; Diday, E.; Winsberg, S. (2000) “Multidimensional scaling for interval data: INTERSCAL”, submitted paper.

Torgenson, W.S. (1958) Theory and Methods of Scaling. Wiley, New York.

Winsberg, S.; De Soete, G. (1997) “Multidimensional scaling with constrained dimensions: CONSCAL”, British Journal of Mathematical and Statistical Psychology, 50: 55–72.

Comments

Downloads

Download data is not yet available.