Abstract
In Topology, Tychonoff’s theorem asserts that the compactness of a product of topological spaces and compactness of each of its factors are equivalent facts. Analogously, the connected products theorem does the same about connectedness. This note is devoted to prove the equivalence between thes two topological results.
References
García Máynez, A. (2011) Introducción a la Topología de Conjuntos. Aportaciones Matemáticas No. 36, Sociedad Matemática Mexicana, México D.F.
Kelley, J.L. (1950) “The Tychonoff product theorem implies the axiom of choice”, Fundamenta Mathematica 37: 75–76.
Kelley, J.L. (1975) General Topology. Springer Verlag GTM no. 27, New York.
Kum, S. (2003) “A correction of Kelley’s proof on the equivalence between the Tychonoff product theorem and the axiom of choice”, Journal of the Chungcheong Mathematical Society 16(2): 75–78.
Pérez, J.A. (2015) Topología de Conjuntos, un Primer Curso. Publicaciones Electrónicas, Vol. 18, Sociedad Matemática Mexicana, México D.F. http://sociedadmatematicamexicana.org.mx/SEPA/ECMS/resumen/P1TE19_1.pdf
Raman-Sundström, M. (2010) “A pedagogical history of compactness”, The American Mathematical Monthly 122(7): 619–635.
Salicrup, G. (1993) Introducción a la Topología. Sociedad Matemática Mexicana, Aportaciones Matemáticas, Textos No. 1, México D.F.
Tychonoff, A.N. (1929) “Über die topologische Erweiterung von Räumen”, Mathematische Annalen 102: 544–561.