Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Combining neural networks and geostatistics for landslide hazard assessment of San Salvador metropolitan area, El Salvador
PDF
DVI

Keywords

landslide
hazard assessment
El Salvador
ANN
geostatistics
artificial neural networks
kriging
deslizamiento de tierra
evaluación de riesgo
El Salvador
RNA
geoestadística

How to Cite

Ríos, R., Ribó, A., Mejía, R., & Molina, G. (2017). Combining neural networks and geostatistics for landslide hazard assessment of San Salvador metropolitan area, El Salvador. Revista De Matemática: Teoría Y Aplicaciones, 23(1), 155–172. https://doi.org/10.15517/rmta.v23i1.22439

Abstract

This contribution describes the creation of a landslide hazard assessment model for San Salvador, a department in El Salvador. The analysis started with an aerial photointerpretation from Ministry of Environment and Natural Resources of El Salvador (MARN Spanish acronym), where 4792 landslides were identified and georeferenced along with 7 conditioning factors including: geomorphology, geology, rainfall intensity, peak ground acceleration, slope angle, distance to road, and distance to geological fault. Artificial Neural Networks (ANN) were utilized to assess the susceptibility to landslides, achieving results where more than 80% of landslide were properly classified using in-sample and out of sample criteria. Logistic regression was used as base of comparison. Logistic regression obtained a lower performance. To complete the analysis we have performed interpolation of the points using the kriging method from geostatistical approach. Finally, the results show that is possible to derive a landslide hazard map, making use of a combination of ANNs and geostatistical techniques, thus the present study can help landslide mitigation in El Salvador.

https://doi.org/10.15517/rmta.v23i1.22439
PDF
DVI

References

Akgun, A. (2012) “A comparison of landslide susceptibility maps produced by logistic regression, multi criteria decision, and likelihood ratio methods: a case study at Izmir, Turkey”, Landslides 9(1): 93–106.

Aki, K. (1993) “Local site effects on weak and strong ground motion”, in: F. Lund (Ed.) New Horizons in Strong Motion: Seismic Studies and Engineering Practice, Tectonophysics 218(1): 93–111.

Ballabio, C.; Sterlacchini, S. (2012) “Support vector machines for landslide susceptibility mapping: the Staffora river basin case study, Italy”, Mathematical Geosciences 44(1): 47–70.

Benito, M.B.; Lindholm, C.; Camacho, E.; Climent, Á.; Marroquín, G.; Molina, E.; Rojas, W.; Escobar, J.J.; Talavera, E.; Alvarado, G.E.; Torres, Y. (2012) “A new evaluation of seismic hazard for the Central America region”, Bulletin of the Seismological Society of America 102(2): 504–523.

Bivand, R.S.; Pebesma, E.J.; Gomez-Rubio, V.; Pebesma, E.J. (2008) Applied Spatial Data Analysis with R. Springer, New York.

Bommer, J.J.; Rodriguez, C.E. (2002) “Earthquake-induced landslides in Central America”, Engineering Geology 63(3): 189–220.

Campbell, R.H.; Brookshire, D.S.; Bernknopf, R.L.; Shapiro, C.D. (1988) “A probabilistic approach to landslide hazard mapping in Cincinnati, Ohio, with application for economic evaluation”, Bulletin of the Association of Engineering Geologists 25(1): 39–56.

Capparelli, G.; Versace, P.P. (2013) “Landslide susceptibility from mathematical model in Sarno area”, Hydrology and Earth System Sciences Discussions 10(10): 12643–12662.

Carrara, A. (1983) “Multivariate models for landslide hazard evaluation”, Journal of the International Association for Mathematical Geology 15(3): 403–426.

Chávez J.A.; Landaverde J.M.; Ayala O.E.; Mendoza L.E. (2014) “Application of constitutive models in the volcanic tephra “Tierra Blanca Joven”, Ingeniería 24(2): 53–78.

Chávez, J.A.; Sebesta, J.; Kopecky, L.; López, R. (2014) “Application of geomorphologic knowledge for erosion hazard mapping”, Natural Hazards 71(3): 1323–1354.

Christou, N. (2013) “Ordinary kriging in terms of the covariance function”, in: http://goo.gl/0J1RkO, consulted 23-Jun-2013, 5:30 p.m.

Chung, C.J.F.; Fabbri, A. G. (2003). “Validation of spatial prediction models for landslide hazard mapping”, Natural Hazards 30(3): 451–472.

Crone, A.J.; Baum, R.L.; Lidke, D.J.; Sather, D.N.D.; Bradley, L.A.; Tarr, A.C. (2002) “Landslides Induced by Hurricane Mitch in El Salvador-An Inventory and Description of Selected Features”, Preprint, USGS Open File Report 01-444, available in http://pdf.usaid.gov/pdf_docs/Pnacr105.pdf

Crosta, G. B.; Imposimato, S.; Roddeman, D.; Chiesa, S.; Moia, F. (2005) “Small fast-moving flow-like landslides in volcanic deposits: the 2001 Las Colinas Landslide (El Salvador)”, Engineering geology 79(3): 185–214.

Dewey, J.W.; White, R.A.; Hernández, D.A. (2004) “Seismicity and tectonics of El Salvador”, Geological Society of America Special Papers 375: 367–378.

Dull, R.A. (2004) “Lessons from the mud, lessons from the Maya: Paleoecological records of the Tierra Blanca Joven eruption”, Geological Society of America Special Papers 375: 237–244.

Ermini, L.; Catani, F.; Casagli, N. (2005) “Artificial neural networks applied to landslide susceptibility assessment”, Geomorphology 66(1): 327–343.

Evans, S.G.; Bent, A.L. (2004) “Las Colinas landslide, Santa Tecla: A higly destructive flowslide triggered by January 13, 2001, El Salvador earthquake”, Geological Society of America Special Papers 375: 25–37.

Fernández-Lavado, C.; Sánchez, A.; Amenós, M.; Barrio, J. (2008) “Caracterización de la susceptibilidad y de la amenaza por movimientos de ladera del Área Metropolitana de San Salvador (AMSS). Scale 1: 75000 (1 Sheet)”, Preprint, Project IPGARAMSS framework. Geólogos del Mundo. San Salvador, El Salvador.

García-Rodríguez, M.J.; Malpica, J.A.; Benito, B.; Díaz, M. (2008) “Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression”, Geomorphology 95(3): 172-191.

García-Rodríguez, M.J.; Malpica, J.A. (2010) “Assessment of earthquake-triggered landslide susceptibility in El Salvador based on an Artificial Neural Network model”, Natural Hazards and Earth System Science 10(6): 1307–1315.

Gaskill, J.; Zuber, B.; Nordman, E. (2015) “Analyzing landslide susceptibility in St. Vincent and the Grenadines using co-kriging and logistic regression”, Preprint, The 2015 IMAGIN Award, Michigan United States. Presentation available in: http://www.imagin.org/awards/sppc/2015/papers/jacob_gaskill_presentation.pdf

Hernández, W.E. (2004) Características Geomecánicas y Vulcanologicas de las Tefras Tierra Blanca Joven, Caldera de Ilopango, El Salvador. M.Sc. Thesis, Universidad Politécnica de Madrid–Universidad Politécnica de El Salvador.

Jibson, R.W.; Crone, A.J.; Harp, E.L.; Baum, R.L.; Major, J.J.; Pullinguer, C.R.; Escobar, D.; Martinez, M: Smith, M.E. (2004) “Landslides triggered by the 13 January and 13 February 2001, earthquakes”, Geological Society of America Special Papers 375: 69–88.

Lee, S.; Choi, J.: Min, K. (2004) “Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea”, International Journal of Remote Sensing 25(11): 2037–2052.

Major, J.J.; Chilling, S.P.; Pullinguer, C.R.; Escobar, C.D. (2004) “Debris-flow hazards at San Salvador, San Vicente, and San Miguel volcanoes, El Salvador”, Geological Society of America Special Papers 375: 89–108.

McNelis, P.D. (2005) Estimation of a Network with Evolutionary Computation. Academic Press, New York.

Melchiorre, C.; Abella, E. C.; van Westen, C. J.; Matteucci, M. (2011) “Evaluation of prediction capability, robustness, and sensitivity in non-linear landslide susceptibility models, Guantánamo, Cuba”, Computers & Geosciences 37(4): 410–425.

Ministerio de Economía–Dirección General de Estadística y Censos (2013) “VI Censo de Población y V de Vivienda”, El Salvador, in: http://goo.gl/yvjzPy, consulted 23-Dec-2013, 2:30 p.m.

Neuhäuser, B.; Damm, B.; Terhorst, B. (2012) “GIS-based assessment of landslide susceptibility on the base of the weights-of-evidence model”, Landslides 9(4): 511–528.

Pradhan, B.; Oh, H.; Buchroithner, M. (2010) “Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area”, Geomatics, Natural Hazards and Risk 1(3): 199–223.

R Core Team. (2014) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Rolo, R.; Bommer, J.J.; Houghton, B.F.; Vallance, J.W.; Berdousis, P.; Mavrommati, C.; Morphy, W. (2004) “Geologic and engineering characterization of Tierra Blanca pyroclastic ash deposits”, Geological Society of America Special Papers 375: 55–68.

Rymer, M.J. (1987) “The San Salvador earthquake of October 10, 1986-geologic aspects”, Earthquake Spectra 3(3): 435–463.

Schmidt-Thomé M. (1975) “The geology in the San Salvador area (El Salvador, Central America), a basis for city development and planning”, Geologisches Jahrbuch 13: 207–228.

SNET-MARN, Servicio Nacional de Estudios Territoriales-Ministerio de Ambiente y Recursos Naturales (2013) “Memoria técnica para el mapa de susceptibilidad de deslizamientos de tierra en El Salvador”, in: http://www.snet.gob.sv/ver/geologia/susceptibilidad+actual/, consulted 12-Sep-2013, 2:30 p.m.

Sofield, D. (2004) “Eruptive history and volcanic hazards of Volcan San Salvador”, Geological Society of America Special Papers 375: 147–158.

Tien Bui, D.; Pradhan, B.; Lofman, O.; Revhaug, I. (2012) “Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and naive Bayes models”, Mathematical Problems in Engineering 2012, 26 pp. Available in: http://www.hindawi.com/journals/mpe/2012/974638/

Van Westen, C.J.; Van Asch, T.W.; Soeters, R. (2006) “Landslide hazard and risk zonation why is it still so difficult?”, Bulletin of Engineering Geology and the Environment 65(2): 167–184.

Warren, S. (2002) “Neural network FAQ”, in: ftp://ftp.sas.com/pub/neural/FAQ.html, consulted 10-Jan-2014, 10:30 a.m.

Weber, H.S.; Wiesemann, G.; Lorenz, W.; Schmidt-Thomé, M. (1978) “Mapa geológico de la República de El Salvador”, Preprint, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany.

Yesilnacar, E.; Topal, T. (2005) “Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey)”, Engineering Geology 79(3): 251–266.

Zeng-Wang, X.U. (2001) “GIS and ANN model for landslide susceptibility mapping”, Journal of Geographical Sciences 11(3): 374–381.

Comments

Downloads

Download data is not yet available.