Abstract
We study optimal stopping problems for generalized averages of identically distributed Bernoulli variables, taking values in the set D = {d0, d1}. We obtain a recurrent formula in the finite horizon case, which gives the value of the game in terms of associated problems of smaller horizon. This allows us to create algorithms for computing the value of the game, as well as the optimal stopping time in these cases. Moreover, we present a series of aplicattions to the study of properties of the value as a function of the parameters.
References
Chow, Y.S., Robbings, H.; Siegmund, D. (1991) The Theory of Optimal Stopping. Dover Pub. Inc., New York.
Chow, Y.S.; Robbings, H. (1965) “On optimal stopping rules for Sn/n”, Illinois Journal of Mathematics.
Dalang, R.C.; Cairoli, R. (1996) Sequential Stochastic Optimization. John Wiley & Sons, Inc., New York.
Dellacherie; Meyer (1978) Probabilité et Potentiel. Hermann, Paris.
Lobo, J.; Cambronero, S. (2001) “Problemas de parada óptima para promedios generalizados de variables discretas. Parte I: Fórmulas de recurrencia”. Preprint, CIMPA-11-2001.
Maitra, A.P.; Sudderth, W.D. (1996) “Discrete gambling and stochastic games”, Appl. of Math., Springer–Verlag, New York.
Roberts, A.W.; Varberg, D.E. (1973) Convex Functions. Academic Press, New York.