Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Agrupamiento de Filas y Columnas Homogéneas en Modelos de Correspondencia
PDF (Español (España))

Keywords

Homogeneity Criterion
Canonical correlation
Inertia
Association Models
Criterio de Homogeneidad
Correlación Canónica
Inercia
Modelos de Asociación

How to Cite

Claudia, M., & Winzer, N. (2004). Agrupamiento de Filas y Columnas Homogéneas en Modelos de Correspondencia. Revista De Matemática: Teoría Y Aplicaciones, 11(1), 59–68. https://doi.org/10.15517/rmta.v11i1.237

Abstract

Goodman(1981) proposed homogeneity and structures criterias in Associaton Models which allow to determine if certain rows or columns in a contingency table should be grouped. In later works, he showed the relations between canonicals scores and the one corresponding to an Association Models. Gilula (1986) developed grouping results suggested by the canonical scores in a contingency table under a RC Canonical Correlation Model. On the other hand, Correspondence Analysis can be seen like a reparametrization of Canonical Correlation Model by virtue of Goodman (1986) and Van der Heijden et al. (1994) result.

https://doi.org/10.15517/rmta.v11i1.237
PDF (Español (España))

References

Gabriel, K. R. (1971) “The biplot graphic display of matrices with applications to principal component analysis”, Biometrika 58(3): 453ss.

Gilula, Z.; Haberman S. (1986) “Canonical analysis of contingency tables by maximum likelihood”, J.A.S.A. 81: 395ss.

Gilula, Z.; Haberman S. (1988) “The analysis of multivariate contingency tables by restricted canonical and restricted associations models”, J.A.S.A. 83: 403ss.

Gilula, Z. (1986) “Grouping and associations in contingency tables”, J.A.S.A. 81: 395ss.

Goodman, L. (1981) “Association models and canonical correlation in the analysis of cross-classifications having ordered categories”, J.A.S.A. 76: 374ss.

Goodman, L. (1985) “The analysis of cross-classified data”, the 1983 Henry L. Rietz Memorial Lecture, The Annals of Statistics 13(1): 10–69.

Goodman, L. (1986) “Some useful extensions of usual correspondence analysis approach and the usual log-linear models approach in the analysis of contingency tables”, International Statistical Review 54(3): 243–309.

Greenacre, M. (1984) Theory and Aplications of Correspondence Analysis. Academic Press, New York.

Greenacre, M.; Blasius, J. (1994) Correspondence Analysis in the Social Sciences. Academic Press, London.

Lancaster, A.(1979) The Chi-Squared Distributions. Wiley, New York.

Mardia, K.; Kent, J.; Bibby, J. (1979) Multivariate Analysis. Academic Press, London.

van der Heijden P.; Leeuw J. de (1985) “Correspondence analysis used complementary to loglinear analysis”, Psychometrika 50: 429–447.

van der Heijden, P.; Mooijaart, A.; Takane, Y. (1994) “Correspondence analysis and contingency table models in correspondence analysis in the social sciences”, M. Greenacre & J. Blasius (Eds.) Correspondence Analysis in the Social Sciences, Academic Press, London: 370ss.

Comments

Downloads

Download data is not yet available.