Abstract
This paper shows an analysis of the order for the approximation and roundoff errors in combined numerical scheme with recorrector strategy of Adams–Moulton–Bashfort family. These methods are used for the numerical solution of the estimation problem in models defined by dynamical ODE. Our interest is avail oneself of “family or kind” of methods which will be efficient or at least competitive for the numerical
solutions of this type of problems. This strategy is consistent with the present tendency in the use of models with minimal square objective function for the adjustment via optimization algorithms with and without constrained and explicit, semi-explicit or implicit numerical methods.
References
Alexander, R. (1997) “Reliability of software for stiff initial-value problems”, SIAM J.,Sci. Comput., IV(10).
Arévalo, C.; Fuhrer, C.; Soderlind, G. (1996) “Stabilized multistep methods for index 2 Euler-Lagrange DAEs”, BIT 36: 1–13.
Bock, H.G. (1991) “Recent advances in parameter identification techniques for ODE in modern methods of optimization”, in: W. Krabs & J. Zowe (Eds.) Proceedings of the Summer School, Bayreuth, 1990, Springer Verlag, New York.
Broyden, C.G. (1967) “Quasi-Newton methods and their application to function minimization”, Math.Comp. 21: 368–381.
Butcher, J.C. (1990) “Order, stepsize and stiffness switching”, Computing 44: 209–220.
Dahlquist, G. (1974) “Problems related to the numerical treatment of stiff differential equations”, in: A. Gunther, B. Levrat, & H. Lipps (Eds.) International Computing Symp., Amer. Elsevier, New York, p.307.
Dennis, J.E.; Schnabel, R.B. (1983) Numerical Methods for Unconstrained Optimization and Non Linear Equations. Prentice-Hall Series in Computational Mathematics, New Jersey.
Enright, W.H. (1976) “Second derivate multi-step methods for stiff ordinary differential equations”, Numerical Analysis 2(2): 351–362.
Gear, W.C. (1971) Numerical Initial Value Problems in O.D.E. Prentice-Hall, New Jersey.
Gómez, J.A.; Marrero, A. (2000) “Computing gradients of inverse problems in ODE models”, Revista de Investigación Operativa, ALIO 9(1,2,3): 179–206
Gómez, J.A.; Marrero, A. (2000) “Convergence of discrete aproximations of inverse problems in ODE models”, Revista de Investigación Operativa, ALIO 9(1,2,3): 207–224.
Hairer, E.; Wanner, G.; Norcett, S.P. (1996) Solving Ordinary Differential Equations I, II. Springer Verlag, New York.
Higham, D.J. (1989) “Analysis of the Enrigth-Kamel partitioning methods for stiff ordinary differential equations”, IMA J.Numerical Anal. 9: 1–14.
Lebedev, V.I. (1994) “How to solve stiff systems of differential equations by explicit methods”, in: G.I. Marchuk (Ed.) Numerical methods and Applications, CRC Press: 45-80.
Lebedev, V.I.; Medovikov, A.A. (1994) “Explicit methods of second order for the solution of stiff systems of ODEs”, Russian Academy of Science IV(2), Moscow.
Marrero, A.; Gómez, J.A. (1990) “Estimación de parámetros en modelos dinámicos no lineales con empleo de métodos numéricos”, Investigación Operacional XI(2): 101–118.
Marrero, A.; Gómez, J.A. (1994) “Problemas de estimación de parámetros en modelos dinámicos no lineales”, Ciencias Matemáticas 15(1): 41–54.
Marrero, A.; Gómez, J.A. (1997) Experiencias numéricas con métodos multipaso-multiderivadas para el problema de estimación de parámetros en modelos dinámicos”, Investigación Operacional 18(1-3): 3–10.
Marrero, A. (2000) Un Enfoque para la Solución Numérica del Problema de Estimación de Parámetros Definido por Ecuaciones Diferenciales Ordinarias. Tesis doctoral, Universidad de La Habana.
Shampine, L.F.; Gordon, M.K. (1991) Computer Solution of Ordinary Differential Equations. The Initial Value Problem. W.H. Freeman & Company, San Francisco.