Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Modelo multifractal aplicado al riego
PDF (Español (España))

Keywords

Irrigation
flexibility
multifractals
binomial
Student
parameter estimation
Riego
flexibilidad
multifractales
binomial, Student
estimación de parámetros

How to Cite

Mercado Escalante, J. R., Aldama R., Álvaro A., Íñiguez C, M., & Mejía G, M. Ángel. (2005). Modelo multifractal aplicado al riego. Revista De Matemática: Teoría Y Aplicaciones, 12(1-2), 173–186. https://doi.org/10.15517/rmta.v12i1-2.262

Abstract

We define the binomial multifractal distribution as an expression of a law of small numbers.

We studied a form of evaluation or design of a distribution system in an irrigation district by determining its conduction capacity with the desired flexibility knowing the following parameters: flow, frequency, and irrigation time. The method consists of the approximation of the binomial distribution through the Gaussian, an inverse relation of probability, two estimations of Gaussian parameters, and the application of the multifractal distribution.

We present the mathematical reformulation of Boltzmann relation in the statistical mechanics, which gives origin to the multifractal model. In particular, we illustrate its application in the problems of irrigation,  pointing out that it is also possible to apply it to multifractal models: variogram, exponential, gamma, and Gaussian.

https://doi.org/10.15517/rmta.v12i1-2.262
PDF (Español (España))

References

Barnsley, M.F. (1993 Fractals Everywhere. Academic Press Professional, Boston.

Clemmens, A.J. (1986) “Canal capacities for demand under surface irrigation”, Journal of Irrigation and Drainage Engineering 112(4): 331–347.

Doob, J.L. (1960) Stochastic Processes. John Wiley & Sons, New York.

Falcon, L.E. (1996) Tomografía Fractal. Tesis Universidad Nacional Autónoma de México, Facultad de Ciencias, México D.F.

Falconer, K. (1990) Fractal Geometry. John Wiley, New York.

Guiasu, S.; Shenitzer, A. (1985) The Mathematical Intelligencer, Vol. 7 No 1. Springer-Verlag.

Guy, R.K. (1998) “The strong law of small numbers”, Amer. Math. Monthly 95: 8.

Íñiguez, M. (1994) Análisis de la Flexibilidad en la Distribución del Agua en los Distritos de Riego. Tesis, Colegio de Postgraduados, México D.F.

Kauzmann, W. (1967) Termodinámica y Estadística, Propiedades Térmicas de la Materia, Vol 2. Ed. Reverté, Barcelona.

Koroliuk, V.S. (1981) Manual de la Teoría de Probabilidades y Estadística Matemática. Ed. Mir, Moscú.

Mercado, J.R.; Aldama, Á.A.; Brambila, F. (2003) “Sobre el problema inverso de difusión”, Revista de Matemática: Teoría y Aplicaciones 10(1 & 2): 92–105.

O’Connor, J.J.; Robertson, E.F. http://www-history.mcs.st-andrews.ac.uk/history/

Pachepsky, Y. ; Timlin, D. (1998) “Water transport in soils as in fractal media”, Journal of Hydrology 204: 98–107.

Riedi, R.H.; Scheuring, I. (1997) “Conditional and relative multifractal spectra”, Fractals 5(1): 153–168.

Rozanov, Y. (1973) Procesos Aleatorios. Ed. Mir, Moscú.

Spiegel, M.R. (1970) Teoría y Problemas de Estadística. McGraw-Hill, Panamá.

Comments

Downloads

Download data is not yet available.