Abstract
In this paper we study the art of recent work Grosse-Erdmann & Kim [6], highlighting as a hypercyclic tuples of operators is a source to build bihypercyclic bilinear mappings.
References
Ansari, S. (1997) “Existence of hypercyclic operators on topological vector spaces”, J. Funct. Anal. 148(2): 384–390.
Bayart, F.; Matheron, É. (2009) Dynamics of Linear Operator. Cambridge Tracts in Mathematics, Cambridge University Press.
Bernal-González, L. (1999) “On hypercyclic operators on Banach spaces”, Proc. Amer. Math. Soc. 127(4): 1003–1010.
Costakis, G.; Hadjiloucas, D.; Manoussos, A. (2009) “Dynamics of tuples of matrices”, American Mathematical Society 137(3): 1025–1034.
Feldman, N. (2008) “Hypercyclic tuples of operators and somewhere dense orbits”, J. Math. Anal. Appl. 346(1): 82–98.
Grosse-Erdmann, K.; Kim, S. (2013) “Bihypercyclic bilinear mappings”, Journal of Mathematical Analysis and Applications 399(2): 701–708.
Kitai, C. (1982) Invariant Closed Sets for Linear Operators. Ph.D. thesis, Universidad de Toronto, Canada.
León, F.; Muller, V. (2004) “Rotations of hypercyclic and supercyclic operators”, Integral Equations Operator Theory 50(1): 385–391.
Rolewicz, S. (1969) “On orbits of elements”, Studia Math. 32(1): 17–22.
Shapiro, J. (2001) “Notes on the dynamics of linear operators”, en: http://www.mth.msu.edu/~shapiro/Pubvit/Downloads/LinDynamics/lindynamics.pdf, consultada 11-May-2013, 8:00 a.m.
Shkarin, S. (2011) “Hypercyclic tuples of operators on Cn and Rn”, Linear and Multilinear Algebra 60(8): 885–896