Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
The phenomenon of half-integer spin, quaternions, and Pauli matrices
PDF (Español (España))

Keywords

half-integer spin
quaternions
Pauli matrices
fundamental group
espín semientero
cuaternios
matrices de Pauli
grupo fundamental

How to Cite

González-Díaz, F. R., & García-Salcedo, R. (2017). The phenomenon of half-integer spin, quaternions, and Pauli matrices. Revista De Matemática: Teoría Y Aplicaciones, 24(1), 45–60. https://doi.org/10.15517/rmta.v24i1.27749

Abstract

In this paper the phenomenon of half-integer spin exemplification Paul AM Dirac made with a pair of scissors, an elastic cord and chair play. Four examples in which the same phenomenon appears and the algebraic structure of quaternions is related to one of the examples are described. Mathematical proof of the phenomenon using known topological and algebraic results are explained. The basic results of algebraic structures are described quaternions H , and an intrinsic relationship with the phenomenon half-integer spin and the Pauli matrices is established.

https://doi.org/10.15517/rmta.v24i1.27749
PDF (Español (España))

References

Bao, L.; Redish, E.F.; Steinberg, R.N. (s.f.) “Student misunderstandings of the quantum wavefunction” (unpublished).

Díaz, F.R.G.; Rodríguez, G.R.M.; Puebla, E.L.; García-Salcedo, R. (2007) “La topología del truco de las tijeras de Dirac”, CIENCIA ergo-sum 14(1): 107–112.

Dick, J.; Childrey, M. (2012) “Enhancing understanding of transformation matrices”, Mathematics Teacher 105(8): 622-626.

Ebbinghaus, H.-D.; Hermes, H.; Hirzebruch, F.; Koecher, M.; Mainzer, K.; Neukirch, J.; Prestel, A.; Remmert, R. (1991) Graduate Texts in Mathematics-Readings in Mathematics, Springer Verlag, Berlin.

Fischler, H.; Lichtfeldt, M. (1991) “Learning quantum mechanics”, in: R. Duit, F. Goldberg, & H. Niedderer (Eds.) Research in Physics Learning: Theoretical Issues and Empirical Studies, IPN, Kiel.

Fischler, H.; Lichtfeldt, M. (1992) “Modern physics and students’ conceptions”, Int. J. Sci. Educ. 14: 181–190.

Greca, I.M.; Freire, O. (2014) “Teaching introductory quantum physics and chemistry: caveats from the history of science and science teaching to the training of modern chemists”, Chem. Educ. Res. Pract. 15: 286–296.

Griffiths, D.J. (1995) Introducción a la Mecánica Cuántica. Prentice Hall, Upper Saddle River NJ.

Ireson, G. (2000) “The quantum understanding of pre-university physics students”, Phys. Educ. 35: 15–21.

Johnston, I.D.; Crawford, K.; Fletcher, P.R. (1998) “Student difficulties in learning quantum mechanics”, Int. J. Sci. Educ. 20: 427–446.

Kauffman, L.H. (2001) Knots and Physics, 3rd edition. World Scientific Publishing Company.

Kronsbein, J. (1967) “Kinematics quaternions spinors and Pauli’s spin matrices”, American Journal of Physics 35(4): 335–342.

Kuhn, T. (1962) La estructura de las revoluciones científicas. Universidad de Chicago, Chicago.

Mashhadi, A. (1996) “Students’ conceptions of quantum physics”, in: G. Welford, J. Osborne & P. Scott Falmere (Eds.) Research in Science Education in Europe: Current Issues and Themes, London: 254–265.

Müller, R.; Wiesner, H. (2002) “Teaching quantum mechanics on an introductory level”, Am. J. Phys. 70(3): 200–209.

Naber G. (2003) The Geometry of Minkowski Spacetime: An Introduction to the Mathematics of the Special Theory of Relativity. Dover Publications.

Niedderer, H.; Bethge, T.; Cassens, H. (1990) “A simplified quantum model: A teaching approach and evaluation of understanding”, in: P.L. Lijnse et al. (Eds.) Relating Macroscopic Phenomena to Microscopic Particles: A Central Problem in Secondary Science Education, CD-b Press, Utrecht.

Petrache, H.I. (2014) “Coset group construction of multidimensional number systems”, Symmetry 6(3): 578–588 [arXiv:1212.1850].

Petri, J.; Niedderer, H. (1998) “A learning pathway in high-school level atomic physics”, Int. J. Sci. Educ. 20: 1075–1088.

Rodríguez Bouza, V. (2012) “Sobre los cuaterniones, álgebras de Lie, y matrices de Pauli. Teoría básica y aplicaciones físicas”. Recuperado el 10 de febrero de 2016 de: http://dspace.sheol.uniovi.es/dspace/handle/10651/18233

Singh, C. (2001) “Student understanding of quantum mechanics”, American Journal of Physics 69(8): 885–895.

Staley, M. (2010) “Understanding quaternions and the Dirac belt trick”, European Journal of Physics 31(3): 467.

Styer, D.F. (1996) “Common misconceptions regarding quantum mechanics”, American Journal of Physics 64: 1202–1202.

Torres, C. (1994) “Rotaciones y espinores (Rotations and spinors)”, Revista Mexicana de Física 40(1): 119–131.

van der Waerden, B.L. (1976) Hamilton’s discovery of quaternions Math. Mag. 49: 227–234.

Zhu, G.; Singh, C. (2013) “Improving student understanding of addition of angular momentum in quantum mechanics”, Physical Review Special Topics-Physics Education Research 9(1): 010101.

Comments

Downloads

Download data is not yet available.