Abstract
To analyze the stability of a linear system of differential equations ẋ = Ax we can study the location of the roots of the characteristic polynomial pA(t) associated with the matrix A. We present various criteria - algebraic and geometric - that help us to determine where the roots are located without calculating them directly.
References
Anagnost, J.J. Desoer, C.A. (1991). “An elementary proof of the Routh-Hurwitz stability criterion”, Circuits, Systems and Signal Processing 10(1):101–114.
Barmish, B.R. (1994) New Tools for Robustness of Linear Systems. Macmillan Publishing Co., New York.
Bhattacharayya, S.P.; Chapellat, H.; Keel, L.H. (1995) Robust Control. The Parametric Approach. Prentice-Hall, Upper Saddle River NJ.
Díaz González, E.C. (2010) El Teorema de Hermite–Biehler. Tesis de Maestría, UAM-Iztapalapa, México, D. F.
Frank, E. (1946) On the zeros of polynomials with complex coefficients. Bull. Amer. Math. Soc. 52(2): 144–157.
Gantmacher, F.R. (1959) The Theory of Matrices. Chelsea Publishing Co., New York.
Guillemin, E.A. (1949) The Mathematics of Circuit Analysis. John Wiley and Sons, New York.
Holtz, O. (2003) Hermite-Biehler, Routh-Hurwitz and total positivity. Linear Algebra and its Applications 372(1): 105–110.
Hirsch, M.W.; Smale, S. (1974) Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, New York.
Loredo, C.A. (2004) “Criterios para determinar si un polinomio es polinomio Hurwitz”, Reporte de los Seminarios de Investigación I y II. UAM-Iztapalapa, México, D.F.
Lyapunov, A.M. (1992) The General Problem of the Stability of Motion. Translated by A.T. Fuller from E. Davaux’s French translation (1907) of the original Russian dissertation (1892), Taylor and Francis, London.