Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Stability systems via Hurwitz polynomials
PDF (Español (España))

Keywords

Hurwitz polynomials
system stability
stability criteria
polinomios Hurwitz
estabilidad de sistemas
criterios de estabilidad

How to Cite

Aguirre-Hernández, B., Loredo-Villalobos, C. A., Díaz-González, E. C., & Campos-Cantón, E. (2017). Stability systems via Hurwitz polynomials. Revista De Matemática: Teoría Y Aplicaciones, 24(1), 61–77. https://doi.org/10.15517/rmta.v24i1.27751

Abstract

To analyze the stability of a linear system of differential equations  = Ax we can study the location of the roots of the characteristic polynomial pA(t) associated with the matrix A. We present various criteria - algebraic and geometric - that help us to determine where the roots are located without calculating them directly.

https://doi.org/10.15517/rmta.v24i1.27751
PDF (Español (España))

References

Anagnost, J.J. Desoer, C.A. (1991). “An elementary proof of the Routh-Hurwitz stability criterion”, Circuits, Systems and Signal Processing 10(1):101–114.

Barmish, B.R. (1994) New Tools for Robustness of Linear Systems. Macmillan Publishing Co., New York.

Bhattacharayya, S.P.; Chapellat, H.; Keel, L.H. (1995) Robust Control. The Parametric Approach. Prentice-Hall, Upper Saddle River NJ.

Díaz González, E.C. (2010) El Teorema de Hermite–Biehler. Tesis de Maestría, UAM-Iztapalapa, México, D. F.

Frank, E. (1946) On the zeros of polynomials with complex coefficients. Bull. Amer. Math. Soc. 52(2): 144–157.

Gantmacher, F.R. (1959) The Theory of Matrices. Chelsea Publishing Co., New York.

Guillemin, E.A. (1949) The Mathematics of Circuit Analysis. John Wiley and Sons, New York.

Holtz, O. (2003) Hermite-Biehler, Routh-Hurwitz and total positivity. Linear Algebra and its Applications 372(1): 105–110.

Hirsch, M.W.; Smale, S. (1974) Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, New York.

Loredo, C.A. (2004) “Criterios para determinar si un polinomio es polinomio Hurwitz”, Reporte de los Seminarios de Investigación I y II. UAM-Iztapalapa, México, D.F.

Lyapunov, A.M. (1992) The General Problem of the Stability of Motion. Translated by A.T. Fuller from E. Davaux’s French translation (1907) of the original Russian dissertation (1892), Taylor and Francis, London.

Comments

Downloads

Download data is not yet available.