Abstract
Unsupervised classifiers allow clustering methods with less or no human intervention. Therefore it is desirable to group the set of items with less data processing. This paper proposes an unsupervised classifier system using the model of soft graph coloring. This method was tested with some classic instances in the literature and the results obtained were compared with classifications made with human intervention, yielding as good or better results than supervised classifiers, sometimes providing alternative classifications that considers additional information that humans did not considered.
References
Cheng, J.; Greiner, R. (1999) “Learning theory and language modeling”, in: N. Friedman, M. Goldszmidt & A. Wyner (Eds.) Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, Alberta: 101–108.
Chow, J.H.; Chow, C. (2006) The Encyclopedia of Hepatitis and Other Liver Diseases. Facts On File, New York.
De los Cobos, S.G.; Goddard, J.; Gutiérrez, M.A.; Martínez, A.E. (2010) Búsqueda y Exploración Estocástica. Universidad Autónoma Metropolitana, Ciudad de México.
Demšar, J. (2006) “Statistical comparisons of classifiers over multiple data sets”, Journal of Machine Learning Research 7(Jan): 1–30.
Diestel, R. (2000) Graph Therory. Springer-Verlag, New York.
Fernández, V.; Berradre, M.; Sulbarán, B.; Ojeda, G.; Peña, J. (2009) “Caracterización química y contenido mineral en vinos comerciales venezolanos”, Revista de la Facultad de Agronomía 26(3): 392–396.
GAMS Development Corporation. (2015) “General Algebraic Modeling System”, en: http://www.gams.com, consultado el 18/08/2015, 17:30.
Gutiérrez, M.A.; Lara, P.; Lopez, R.; Ramírez, J. (2011) “Heuristics for the robust coloring problem”, Revista de Matemática: Teoría y Aplicaciones 18(1): 137–147.
Jain, A.K.; Murty, M.N.; Flynn, P.J. (1999) “Data clustering: a review”, ACM Computing Surveys (CSUR) 31(3): 264–323.
Joachims, T. (1996) “A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization”, Dept. of Computer Science, Carnegie-Mellon Univ., Pittsburgh PA CMU(CS): 96–118.
Lara, P.; Gutiérrez, M.A.; De los Cobos, S.G.; Rincón, E. (2015) “Coloración de gráficas suaves”, Revista de Matemática: Teoría y Aplicaciones 22(2): 1–13.
McAllester, D.; Schapire, R.E. (2002) “Learning theory and language modeling”, in: G. Lakemeyer & B. Nebel (Eds.) Exploring Artificial Intelligence in the New Millenium, Morgan Kaufmann, San Francisco: 271–285.
Montgomery, D.C.; Runger, G.C. (2003) Applied Statistics and Probability for Engineers. John Wiley & Sons, New York.
Moreno, B. (2009) Minería sobre Grandes Cantidades de Datos. Tesis de Maestría, Departamento de Ingeniería Eléctrica, Posgrado en Ciencias y Tecnologías de la Información, Universidad Autónoma Metropolitana, México D.F.
Parzen E. (1962) “On estimation of a probability density function and mode”, The Annals of Mathematical Statistics 33(3): 1065–1076.
Ripley, B.D. (1996) Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge.
Ritter, G. (2014) Robust Cluster Analysis and Variable Selection. CRC Press, Boca Raton.
Universidad de California en Irvine (2015) “Iris related papers”, en: http://archive.ics.uci.edu/ml/datasets/Iris, consultado el 25/11/2015, 12:53.
Universidad de California en Irvine (2015) “UCI machine learning repository”, en: http://archive.ics.uci.edu/ml/index.html, consultado el 28/05/2015, 18:18.
Universidad Nicolás Copérnico de Polonia (2010) “Datasets classifier”, en: http://www.is.umk.pl/projects/datasets.html, consultado el 23/11/2015, 14:22.
Waterhouse, A. L.; Ebeler, S. E. (1998) Chemistry of Wine Flavor. American Chemical Society, Washington DC.
Weber, T. (2009) “The lower/middle palaeolithic transition. Is there alower/middle palaeolithic transition?”, Preistoria Alpina 44: 17–24.
Xing, E.P.; Ng, A.Y.; Jordan, M.I.; Russell, S. (2003) “Distance metric learning with application to clustering with side-information”, Advances in Neural Information Processing Systems 15(1): 505–512.
Xu, R.; Wunsch, D. (2005) “Survey of clustering algorithms”, IEEE Transactions on Neural Networks 16(3): 645–678.