Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Estimación bayesiana en la familia Pareto generalizada
PDF (Español (España))

Keywords

Generalized Pareto family
estimation methods
Monte Carlo study
Familia Pareto generalizada
métodos de estimación
estudio Monte Carlo

How to Cite

Sánchez Gómez, R. (2008). Estimación bayesiana en la familia Pareto generalizada. Revista De Matemática: Teoría Y Aplicaciones, 15(1), 71–82. https://doi.org/10.15517/rmta.v15i1.289

Abstract

The generalized Pareto family of distributions with scale parameter > 0 and k form, has been used for modeling surplus over a given threshold, even though the parametric estimation in this family has some problems. In this work we study the Bayesian approach for estimating parameters and k when no a priori information is available and we discuss the case when there is previous information. We present
a simulation study in order to analyze the performance of the Bayesian methodology, employing non informative a priori distributions and the methods available in the literature. This study shows that the Bayesian estimation performs better than other proposed methods, in terms of bias and aquare root of the mean quadratic error. The estimation methodologies analized are applied to real data sets.

https://doi.org/10.15517/rmta.v15i1.289
PDF (Español (España))

References

Arnold, B.; Press, S.J. (1983) “Bayesian inference for Pareto populations”, Journal of Econometrics 21: 287–306.

Castillo, E.; Hadi, A.S. (1997) “Fitting the generalized Pareto distribution to data”, JASA 92(440): 1609–1620.

Davison, A.C.; Smith, R.L. (1990) “Models for exceedances over high thresholds”, (with discussion), JRSS, series B 52: 393–442.

Grimshaw, S.D. (1993) “Computing maximun likelihood estimates for the generalized Pareto distribution”, Technometrics 35: 185–191.

Hosking, J.R.M.; Wallis, J.R. (1987) “Parameter and quantile estimation for the generalized Pareto distribution”, Technometrics 29(3): 339–349.

Huang, L.; Smith, R.L. (1999) “Meteorologically-dependent trends in urban ozone”, Environmetrics 10: 103–118.

Kullback, S. (1959) Information Theory and Statistics. Dover Publications, U.S.A.

Lindsey, J.K. (1996) Parametric Statistical Inference. Clarendon Press, Oxford.

Pickands, J. (1975) “Statistical Inference using extreme order statistics”, Annals of Statistics 3: 119–131.

Robert, C.P. (1994) The Bayesian Choice. A Decision-Theoretic Motivation. Springer, New York.

Sánchez-Gómez, R. (2001) Análisis de Tendencia en Excedencias sobre un Umbral Alto, con Aplicación en Ozono Urbano. Tesis de Doctorado, Colegio de Postgraduados, México.

Smith, R.L. (1984) “Discussion on a model fitting analysis of daily rainfall data”, J. R. Statistic. Soc., series A 147: 1–34.

Yang, R.; Berger, J.O. (1998) “A catalog of noninformative priors”, Technical Report, Purdue University.

Comments

Downloads

Download data is not yet available.