Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
On the post-linear quadrupole-quadrupole metric
PDF
PDF (Español (España))

Keywords

general relativity
solutions of Einstein’s equations
approximation procedures
weak fields
relatividad general
soluciones de las ecuaciones de Einstein
procedimientos de aproximación
campos débiles

How to Cite

Frutos-Alfaro, F., & Soffel, M. (2017). On the post-linear quadrupole-quadrupole metric. Revista De Matemática: Teoría Y Aplicaciones, 24(2), 239–255. https://doi.org/10.15517/rmta.v24i2.29856

Abstract

The Hartle-Thorne metric defines a reliable spacetime for most astrophysical purposes, for instance simulations of slowly rotating stars. Solving the Einstein field equations, we added terms of second order in the quadrupole moment to its post-linear version in order to compare it with solutions found by Blanchet in the multi-polar post-Minkowskian framework. We first derived the extended Hartle-Thorne metric in harmonic coordinates and then showed agreement with the corresponding post-linear metric from Blanchet. We also found a coordinate transformation from the post-linear Erez-Rosen metric to our extended Hartle-Thorne spacetime. It is well known that the Hartle-Thorne solution can be smoothly matched with an interior perfect fluid solution with appropriate physical properties. A comparison among these solutions provides a validation of them. It is clear that in order to represent realistic solutions of self-gravitating (axially symmetric) matter distributions of perfect fluid, the quadrupole moment has to be included as a physical parameter.

https://doi.org/10.15517/rmta.v24i2.29856
PDF
PDF (Español (España))

References

Berti, E.; White, F.; Maniopoulou, A.; Bruni, M. (2005) “Rotating neutron stars: An invariant comparison of approximate and numerical space-time models”, Monthly Notices of the Royal Astronomical Society 358: 923–938. http://dx.doi.org/10.1111/j.1365-2966.2005.08812.x

Blanchet, L.; Damour, T. (1986) “Radiative gravitational fields in general relativity I. General structure of the field outside the source”, Philosophical Transactions of the Royal Society of London A 320(1555): 379–430. http://dx.doi.org/10.1098/rsta.1986.0125

Blanchet, L. (1998) “Quadrupole-quadrupole gravitational waves”, Classical and Quantum Gravity 15(1): 89–111. http://dx.doi.org/10.1088/0264-9381/15/1/008

Blanchet, L. (2014) “Gravitational radiation from Post-Newtonian sources and inspiralling compact binaries”, Living Reviews in Relativity 17(2). http://www.livingreviews.org/lrr-2014-2

Carmeli, M. (2001) Classical Fields: General Relativity and Gauge Theory. World Scientific Publishing, Singapore. http://www.worldscientific.com/worldscibooks/10.1142/4843

Cook, G.B.; Shapiro, S.L.; Teukolsky, S A. (1994) “Rapidly rotation neutron stars in general relativity: Realistic equations of state”, Astrophysical Journal 424: 823–845. http://dx.doi.org/10.1086/173934

Damour, T.; Iyer, B. (1991) “Multipole analysis for electromagnetism and linearized gravity with irreducible Cartesian tensors”, Physical Review D 43(10): 3259–3272. http://dx.doi.org/10.1103/PhysRevD.43.3259

Doroshkevich, A.G.; Zel’dovich, Ya.B.; Novikov, I.D. (1966) “Gravitational collapse of nonsymmetric and rotating masses”, Journal of Experimental and Theoretical Physics (Soviet Physics JETP) 22(1): 122–130. http://www.jetp.ac.ru/cgi-bin/e/index/e/22/1/p122?a=list

Ernst. F.J. (1968) “New formulation of the axially symmetric gravitational field problem”, Physical Review 167(5): 1175–1177. http://dx.doi.org/10.1103/PhysRev.167.1175

Fodor, G.; Hoenselaer, C.; Perjés, Z. (1989) “Multipole moments of axisymmetric systems in relativity”, Journal of Mathematical Physics 30(10): 2252–2257. http://dx.doi.org/10.1063/1.528551

Frutos-Alfaro, F.; Retana-Montenegro, E.; Cordero-García, I.; Bonatti- González, J. (2013) “Metric of a slow rotating body with quadrupole moment from the Erez-Rosen metric”, International Journal of Astronomy and Astrophysics 3: 431–437. (ArXiv:1209.6126v2). http://dx.doi.org/10.4236/ijaa.2013.34051

Frutos-Alfaro, F.; Montero-Camacho, P.; Araya, M.; Bonatti-González, J. (2015) “Approximate metric for a rotating deformed mass”, International Journal of Astronomy and Astrophysics 5: 1–10. http://dx. doi.org/10.4236/ijaa.2015.51001

Geroch, R. (1970) “Multipole moments. II. Curved space”, Journal of Mathematical Physics 11(8): 2580–2588. http://dx.doi.org/10.1063/1.1665427

Gürsel, Y. (1983) “Multipole moments for stationary systems: The equivalence of the Geroch-Hansen formulation and the Thorne formulation”, General Relativity and Gravitation 15(8): 737–754. http://dx.doi. org/10.1007/BF01031881

Hansen, R.O. (1974) “Multipole moments of stationary space-times”, Journal of Mathematical Physics 15(1): 46–52. http://dx.doi.org/10.1063/1.1666501

Hartle, J.B.; Thorne K.S. (1968) “Slowly rotating relativistic stars. II. Models for neutron stars and supermassive stars”, Astrophysical Journal 153: 807–834. http://dx.doi.org/10.1086/149707

Hearn, A.C. (1999) REDUCE (User’s and Contributed Packages Manual). Konrad-Zuse-Zentrum für Informationstechnik, Berlin. http://www.reduce-algebra.com/docs/reduce.pdf

Hernández-Pastora, J.L.; Martín, J. (1994) “Monopole-quadrupole static axisymmetric solutions of Einstein field equations”, General Relativity and Gravitation 26(9): 877–907. http://dx.doi.org/10.1007/BF02107146

Hoenselaers, C.; Perjés, Z. (1990) “Multipole moments of axisymmetric electrovacuum spacetimes”, Classical and Quantum Gravity 7(10): 1819–1825. http://dx.doi.org/10.1088/0264-9381/7/10/012

Manko, V.S.; Mielke, E.W.; Sanabria-Gómez, J.D. (2000) “Exact solution for the exterior field of a rotating neutron star”, Physical Review D 61, 081501(R). http://dx.doi.org/10.1103/PhysRevD.61.081501

Manko, V.S.; Sanabria-Gómez, J.D.; Manko, O.V. (2000) “Nine-parameter electrovac metric involving rational functions”, Physical Review D 62, 044048. http://dx.doi.org/10.1103/PhysRevD.62.044048

Pachón, L.A.; Rueda, J.A.; Sanabria-Gómez, J.D. (2006) “Realistic exact solution for the exterior field of a rotating neutron star”, Physical Review D 73, 104038. http://dx.doi.org/10.1103/PhysRevD.73.104038

Pappas, G.; Apostolatos, T.A. (2012) “Revising the multipole moments of numerical spacetimes and its consequences”, Physical Review Letters 108(23), id. 231104. http://dx.doi.org/10.1103/PhysRevLett.108.231104

Poisson, E.; Will, C.M. (2014) Gravity (Newtonian, Post-Newtonian, Relativistic). Cambridge University Press, Cambridge. http://www.cambridge.org/us/academic/subjects/physics/

Quevedo, H.; Mashhoon, B. (1991) “Generalization of Kerr space-time”, Physical Review 43(12): 3902–3906. http://dx.doi.org/10.1103/PhysRevD.43.3902

Quevedo, H. (2011) “Exterior and interior metrics with quadrupole moment”, General Relativity and Gravitation, 43(4): 1141–1152. http://dx.doi.org/10.1007/s10714-010-0940-5

Ryan, F.D. (1995) “Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments”, Physical Review D 52, 5707. http://dx.doi.org/10.1103/PhysRevD.52.5707

Simon, W.; Beig, R. (1983) “The multipole structure of stationary space-times”, Journal of Mathematical Physics 24(5): 1163–1171. http://dx.doi.org/10.1063/1.525846

Thorne, K.S. (1980) “Multipole expansions of gravitational radiation”, Reviews on Modern Physics 52(2): 299–340. http://dx.doi.org/10.1103/RevModPhys.52.299

Winicour, J.; Janis, A.I.; Newman, E.T. (1968) “Static, axially symmetric point horizons”, Physical Review 176: 1507–1513. http://dx.doi.org/10.1103/PhysRev.176.1507

Young, J.H.; Coulter; C.A. (1969) “Exact metric for a nonrotating mass with a quadrupole moment”, Physical Review 184: 1313–1315. http://dx.doi.org/10.1103/PhysRev.184.1313

Zel’dovich, Ya.B.; Novikov, I.D. (2011) Stars and Relativity. Dover Publications, New York. http://store.doverpublications.com/0486694240.html

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2017 Revista de Matemática: Teoría y Aplicaciones

Downloads

Download data is not yet available.