Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Stochastic model for the hiv infection of T CD4+ cells in immune system
PDF (Español (España))

Keywords

stochastic processes
dynamical system
local stability
HIV
AIDS
procesos estocásticos
sistemas dinámicos
estabilidad Local
VIH
SIDA

How to Cite

Toro-Zapata, H. D., Roa-Vásquez, E., & Mesa-Mazo, M. J. (2017). Stochastic model for the hiv infection of T CD4+ cells in immune system. Revista De Matemática: Teoría Y Aplicaciones, 24(2), 287–313. https://doi.org/10.15517/rmta.v24i2.29870

Abstract

In this paper we study the dynamics of HIV infection through the stochastic birth and death processes and ordinary differential equations representing a real system. For this specific case, a stochastic process is described to interpret the dynamics of HIV infection within a person’s organism in the initial stages of infection (post exposure or window period); that is to say, the initial time for the model corresponds with the very moment the virus enters the organism, and from then on the process of replication is taken into account and the incidences that the virus generates when it attacks the CD4+ T cells, which are integral parts of the patient’s immune system. The stochastic process allows one to deduce from first principles and create a basic model for HIV infection. The model is similar to those studied in the literature. It is a system based on ordinary differential equations with stochastic states. The state variables correspond to expected values (averages). We also find differential equations for the variance of the stochastic state of the variables, which provides additional information about the system. Finally, we present the local analytical study of the complete model and a numerical study of the system solutions using values of the parameters. The values of the parameters were obtained from secondary sources and were used to illustrate the analytical results.

https://doi.org/10.15517/rmta.v24i2.29870
PDF (Español (España))

References

Adams, B.; Banks, H.T.; Davidian, M.; Kwon, H.-D.; Tran, H.T.; Wynne, S.N.; Rosenberg, E.S. (2005) “HIV dynamics: Modeling, data analysis, and optimal treatment protocols”, Journal of Computational and Applied Mathematics 184(1): 10–49.

Alcamí, J. (2004) “Avances en la inmunopatología de la infección por el VIH”, Enfermedades infecciosas y Microbiologia Clínica 22(8): 486–496.

Bailey, N.T. (1990) The Elements of Stochastic Processes with Applications to the Natural Sciences. John Wiley & Sons, New York.

Chao, D.L.; Davenport, M.P.; Forrest, S.; Perelson, A.S. (2004) “A stochastic model of cytotoxic T cell responses”, Journal of Theoretical Biology 228(2): 227–240.

Culshaw, R.; Shigui, R.; Raymond, J. (2004) “Optimal HIV treatment by maximising immune response”, Mathematical Biology 48(5): 545–562.

Dalal, N.; Greenhalgh, D.; Mao, X. (2008) “A stochastic model for internal HIV dynamics”, Journal of Mathematical Analysis and Applications 341(2): 1084–1101.

Gray, R.H.; Li, X.; Wawer, M.J.; Gange, S.J.; Serwadda, D.; Sewankambo, N.K.; Moore, R.; Wabwire-Mangen, F.; Lutalof, T.; Quinn, T.C. (2003) “Stochastic simulation of the impact of antiretroviral therapy and HIV vaccines on HIV transmission; Rakai, Uganda”, AIDS 17(13): 1941–1951.

Jiang, D.; Liu, Q.; Shi, N.; Hayat, T.; Alsaedi, A.; Xia, P. (2017) “Dynamics of a stochastic HIV-1 infection model with logistic growth”, Physica A: Statistical Mechanics and its Applications 469(C): 706–717.

Kamina, A.; Makuch, R.W.; Zhao, H. (2001) “A stochastic modeling of early HIV-1 population dynamics”, Mathematical Biosciences 170(2): 187–198.

Kirschner, D. (1996) “Using mathematics to understand HIV immune dynamics”, AMS notices 43(2): 191–202.

Kouyos, R.; Althaus, C.; Bonhoeffer, S. (2006) “Stochastic or deterministic: What is the effective population size of HIV-1?”, Trends in Microbiology 14(12): 507–511.

Lewis, F.; Greenhalgh, D. (2001) “Three stage AIDS incubation period: A worst case scenario using addict-needle interaction assumptions”, Mathematical Biosciences 169(1): 53–87.

Londoño, C.A.; Toro, H.D.; Trujillo-Salazar, C.A. (2014) “Modelo de simulación para la infección por VIH y su interacción con la respuesta inmune citotóxica”, Revista de Salúd Publica (Journal of Public Health) 16(1): 114–127.

Mesa, M.J.; Toro H.D.; Prieto, D.A. (2014) “Modelo de simulación para la transmisión del VIH y estrategias de control basadas en diagnóstico”, Revista de Salúd Publica (Journal of Public Health) 16(1): 139–152.

Montoya-Guarín, C.J.; Moreno-Fernández, E.M.; Rugeles-López, M.T. (2006) “Reacciones y alteraciones del sistema inmune durante la infección por el VIH-1”, Infectio 10(4): 250–265.

Nelson, P.W.; Murray, J.D.; Perelson, A.S. (2000) “A model of HIV- 1 pathogenesis that includes an intracellular delay”, Mathematical Biosciences 163(2): 201–215.

Nelson, P.W.; Perelson, A.S. (2002) “Mathematical analysis of delay differential equation models of HIV-1 infection”, Mathematical Biosciences 179(1): 73–94.

Nucamendi, J.P. (2005) El VIH/SIDA, pandemia del nuevo siglo. México D.F.

OMS (2016) “Preguntas y respuestas sobre el VIH/SIDA”, en: www.who.int/features/qa/71/es/

ONUSIDA (2010) “Objetivo de Desarrollo del Milenio 6: Seis cosas que debes saber acerca de de respuesta al SIDA actual”, en: www.unaids.org

ONUSIDA (2015) “Hoja informativa 2015: estadísticas globales”, en: http://www.unaids.org/sites/default/files/media_asset/20150901_FactSheet_2015_es.pdf

Orellana, J.M. (2011) “Optimal drug scheduling for HIV therapy efficiency improvement”, Biomedical Signal Processing and Control 6(4): 379–386.

Perelson, A.S.; Kirschner, D.E.; De Boer, R. (1993) “Dynamics of HIV infection of CD4+ T cells”, Mathematical Biosciences 114(1): 81–125.

Pérez-Ibarra, J.L.; Toro, H.D. (2014) “Modeling the cytotoxic immune response effects on human immunodeficiency virus”, Visión Electrónica 8(1): 54–62.

Perko, L. (2001) Differential Equations and Dynamical Systems, 3rd Ed. Texts in Applied Mathematics 7, Springer, New York.

Ramírez, C.; Muñoz, A.; García, M. (2008) Modelos Biomatemáticos II. Ediciones Uniquindio, Colombia.

Ribeiro, R.M.; Bonhoeffer, S. (1999) “A stochastic model for primary HIV infection: Optimal timing of therapy”, AIDS 13(3): 351–357.

Schmitz, S.F.H. (2000) “Effects of treatment or/and vaccination on HIV transmission in homosexuals with genetic heterogeneity”, Mathematical Biosciences 167(1): 1–18.

Tan, W.Y.; Byers, R.H. (1993) “A stochastic model of the HIV epidemic and the HIV infection distribution in a homosexual population”, Mathematical Biosciences 113(1): 115–143.

Taylor, J.; Cumberland, W.G.; Sy, J. (1994) “A stochastic model for analysis of longitudinal AIDS data”, Journal of the American Statistical Association 89(427): 727–736.

Toro, H.D.; Caicedo, A.G.; Bichara, D.; Lee, S. (2014) “Role of active and inactive cytotoxic immune response in human immunodeficiency virus dynamics”, Osong Public Health and Research Perspectives 5(1): 3–8.

Trujillo, C.A.; Toro, H.D. (2014) “Análisis teórico de la transmisión y el control del VIH en un centro de reclusión”, Mat. Serie A: Conferencias, Seminarios y Trabajos de Matematica 19: 19–26.

Trujillo, C.A.; Toro, H.D. (2015) “Simulation model for AIDS dynamics and optimal control through antiviral treatment”, in: Tost, G.O., & Vasilieva, O. (Eds.) Analysis, Modelling, Optimization, and Numerical Techniques, (Vol. 121). Springer, New York.

Wang, L. (2011) “Global mathematical analysis of an HIV-1 infection model with holling type-II incidence”, Communications in Applied Analysis 15(1): 47–56.

Wang, J.; Guo, M.; Liu, X.; Zhao, Z. (2016) “Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay”, Applied Mathematics and Computation 291(C): 149–161.

Wick, D.; Self, S.G. (2000) “Early HIV infection in vivo: branching- process model for studying timing of immune responses and drug therapy”, Mathematical Biosciences 165(2): 115–134.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2017 Revista de Matemática: Teoría y Aplicaciones

Downloads

Download data is not yet available.