Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Repeating games and dynamical systems in oil market
PDF (Español (España))

Keywords

Mathematical Economics
oil prices
mathematical models
Economı́a matemática
precios del petróleo
modelos matemáticos

How to Cite

Acuña Ortega, O., & Ulate Montero, F. (2010). Repeating games and dynamical systems in oil market. Revista De Matemática: Teoría Y Aplicaciones, 17(1), 81–101. https://doi.org/10.15517/rmta.v17i1.314

Abstract

We use the modern theory of repetitive games in a model that help understand a market with a cartel like OPEP. We also study a dynamical system Lotka-Volterra type, and we analyze the dynamic behavior of the model.

https://doi.org/10.15517/rmta.v17i1.314
PDF (Español (España))

References

Acuña, O.; Ulate, F. (1994) Matrices No Negativas. Editorial de Universidad de Costa Rica.

Acuña, O.; Ulate, F. (2008) “Adam Smith y sistemas dinámicos”, Revista Ciencias Económicas 26(1): 171–185.

Ascanio, A. (2004) “Teoría y práctica: curva de la demanda del petróleo crudo venezolano”, Universidad Simón Boĺıvar, Caracas.

Barrel, R.; Pomerantz, O. (2004) “Oil prices and the world economy”, National Institute of Economic and Social Research, London.

Campbell, C.J. (2002) “Forecasting global oil supply 2000-2050”, M. King Hubbert Center for Petroleum Supply Stydies, USA.

Coderch, M. (2006) “El fin del petróleo barato”, Foreign Policy, Edición Española, .

De Santis, R. (2000) “Crude oil price fluctuations and Saudi Arabian behaviour”, Kiel Working Paper No. 1014. Kiel Institute of World Economics, Alemania.

Economagic.com (2006) “Economic Time Series Page. Price of West Texas Intermediate Crude”. Monthly NSA, Dollar Per Barrel. http://www.economagic.com/emcgi/data.exe/var/west-texas-crude-long

Financial Forecast Center Home Page. http://www.forecast.org/National

Gibbons, R. (1992) Game Theory for Applied Economists. Princeton University Press.

Hallan, T.G.; Levin, S.A. (1986) Mathematical Ecology: An Introduction. Biomathematics 17, Springer, Berlin.

Hirsch, M.W. (1982) “Systems of differential equations which are competitive or cooperative: I Limit sets”, SIAM J. Math. Anal. 13: 167–179.

Hofbauer, J.; Sigmund, K. (1998) Evolutionary Games and Populations Dynamics. Cambridge University Press, Cambridge U.K.

Lotka, A.J. (1957) Elements of Mathematical Biology. Dover, New York.

OPEP (2005) Bolet́ın Anual Estadístico, www.opec.org

Perko, L. (2001) Differential Equations and Dynamical Systems. Springer–Verlag, Berlin.

Pindyck, R. (2005) The Long-Run Evolution of Energy Prices. Massachusetts Institute of Technology. Cambridge.

Rotemberg, J.; Garth, S. (1985) “A supergame theoretic model of price wars during boorns”, American Economic Review 78: 390–407.

Ulate, F. (2006) “Formalización de una teoría de la mentalidad”, Revista de Matemática: Teoría y Aplicaciones 13(1): 53–80.

Comments

Downloads

Download data is not yet available.