Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Multiobjective Tabu Search with mixed integers and reference point
PDF (Español (España))

Keywords

multiple objetives
metaheuristics
tabu sea
múltiples objetivos
metaheurísticas
búsqueda tabú

How to Cite

Beausoleil, R. P. (2018). Multiobjective Tabu Search with mixed integers and reference point. Revista De Matemática: Teoría Y Aplicaciones, 25(1), 115–150. https://doi.org/10.15517/rmta.v1i25.32234

Abstract

In this work we present a domain-independent Tabu Search approach for multiobjective optimization with mixed-integer variables. In this we investigate two aspects: domain-independence and applicability in optimization practice and focus our attention in problems that appear frequently in the real world, like logistic network (for example: multi-stage distribution networks problems, location-allocation problems, time-tabling problems); however, other classical problems were investigated, like: coverage set problem, partitioning set problem, multidimentional knapsack problem and shortest path problem. All these problems belong to the NP-hard class, with a great number of decision variables, containing a great number of heterogeneous constrains, presenting a challenge to find feasible solutions.

https://doi.org/10.15517/rmta.v1i25.32234
PDF (Español (España))

References

Balas, E.; Padberg, M. (1976) “Set partitioning: a survey´´, SIAM Review 18(4): 710–760.

Beausoleil, R.P. (2014) “Interactive multiobjective tabu/scatter search based on reference point´´, Revista de Matemática : Teoría y Aplicaciones 21(2): 261–282.

Campos, V.; Laguna, M.; Martí, R. (2005) “Context-independent scatter and tabu search for permutation problems´´, INFORMS Journal on Computing 17(1): 111–122.

Davis, E.W.; Patterson, J.H. (1975) “A comparison of heuristic and optimum solutions in resource constrained project scheduling´´, Management Science 21(8): 944–955.

Deb, K.; Sundar, J.; Bhaskara, U.; Chaudhuri, S. (2006) “Reference point based multi-objective optimization using evolutionary algorithms´´, Inter- national Journal of Computational Intelligence Research (IJCIR) 2(3): 273–286.

Elmaghraby, S.E.; Moder, J.J. (1977) Handbook of Operations Research.

Geoffrion, A.M.; Graves, G.W. (1974) “Multicommodity distribution system design by benders decomposition´´, Management Science 20(5): 822– 844.

Glover, F.; Laguna, M. (1997) “General purpose heuristics for integer programming part I", Journal of Heuristics 2(4): 343–358.

Greenwood, G.W.; Hu, X.S.; D’Ambrosio, J.G. (1997) “Fitness functions for multiple objective optimization problems: combining preferences with Pareto rankings", in: R.K. Belew & M.D. Vose (Eds.) Foundations of Genetic Algorithms, San Francisco: 437–455.

Hitchcock, F.L. (1941) “The distribution of a product from several sources to numerous localities", Studies in Applied Mathematics 20(1-4): 224–230.

Jaskiewicz, A. (2004) “A comparative study of multiple-objective metaheuristics on the bi-objective set covering problem and the pareto memetic algorithm", Annals of Operation Research 131(1-4): 135–158.

Kelly, J.P.; Xu, J. (1999) “A set-partitioning-based heuristic for the vehicle routing problem", INFORMS Journal on Computing 11(2): 161–172.

Laguna, M.; Gortázar F.; Gallego, M.; Martí, R. (2014) “A black-box scatter search for optimization problems with integer variables", Journal of Global Optimization 58(3): 497–516.

Laguna, M.; Martí, R. (2003) The OptQuest Callable Library, in: S. Voss & D.L. Woodruff (Eds.) Optimization Software Class Libraries, Kluwer Academic Publishers, Boston: 193–218.

Michalewicz, Z. (1995) “A survey of constraint handling techniques in evolutionary computation methods", in: Proceedings of the 4th Annual Conference on Evolutionary Programming, MIT Press Cambridge MA, Estados Unidos: 135–155.

Mitsuo, G.; Runwei, G.; Lin, L. (2008) Network Models and Optimization: Multiobjective Genetic Algorithms Approach. Springer-Verlag Lon- don, Reino Unido.

Samed, M.M.A.; Ravagnani, M.A. da S.S. (2008) “Coevolutionary genetic algorithm to solve economic dispatch", in: P. Siarry & Z. Michalewicz (Eds.) Advances in Metaheuristics for Hard Optimization, Natural Computing Series, Springer Berlin Heidelberg: 317–327.

Smith, B.; Brailsford, S.; Hubbard, P.; Williams, H. (1996) “The progressive party problem: Integer linear programming and constraint programming compared", Constraints 1(1-2): 119–138.

Walser J.P. (1999) Integer Optimization by Local Search: A Domain-Independent Approach. Springer-Verlag Berlin Heidelberg, Alemania.

Wierzbicki, A.P. (1982) “A mathematical basis for satisficing decision making", Mathematical Modelling 3(5): 391–405.

Zitzler, E.; Laumanns, M. (2001) “Test problems for multiobjective optimizers“. Institute TIK, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland.

Zitzler E.; Thiele, L. (1999) “Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach", IEEE Transactions on Evolutionary Computation 3(4): 257–271.

Comments

Downloads

Download data is not yet available.