Abstract
This article presents a new model for demographic simulation which can be used to forecast and estimate the number of people in pension funds (contributors and retirees) as well as workers in a public institution. Furthermore, the model introduces opportunities to quantify the financial flows coming from future populations such as salaries, contributions, salary supplements, employer contribution to savings/pensions, among others. The implementation of this probabilistic model will be of great value in the actuarial toolbox, increasing the reliability of the estimations as well as allowing deeper demographic and financial analysis given the reach of the model. We build a mathematical and probabilistic model that allows us to capture the singularities of the transitions between states with enough flexibility that it can be applied to several scenarios. We successfully estimate its first moments, and show how to adjust the required probabilities. In order to verify the exactness of the proposed model we applied it to real data from a public institution, showing that the estimation error is below the 2%.
References
Bowers, N.; Gerber, H.; Hickman, J.; Jones, D.; Nesbitt, C. (1986) Actuarial Mathematics. Society of Actuaries, Estados Unidos.
Ching, W.; Zhang, S.; Ng, M. (2007) “On multi-dimensional Markov chain models”, Pacific Journal of Optimization 3(2): 235–243.
Chung, K. (1967) Markov Chain with Stationary Transition Probabilities, 2da edición. Springer-Verlag, Berlin, Heidelberg.
Hoel, P.; Port, S.; Stone, C. (1987) Introduction to Stochastic Processes. Waveland Press, Boston.
Kulkarni, V. (2011) Introduction to Modeling and Analysis of Stochastic Systems. Springer, New York.
MacDonald, I.; Zucchini, W. (2009) Hidden Markov Models for Time Series. An Introduction Using R. Chapman & Hall, Boca Raton FL, EE.UU.
Morales, I.; Castro, M. (2016) “Proyecciones demográficas y actuariales por medio del método de cadenas de Markov con Monte Carlo”, Revista de Matemática: Teoría y Aplicaciones 23(1):241–253.
Norris, J.R. (1997) Markov Chains. Cambridge University Press, Reino Unido.
Ross, S. (1997) Introduction to Probability Models, 6ta edición. Academic Press, California.
Taylor, H.; Karlin, S. (1998) An Introduction to Stochastic Modeling, 3a edición. Academic Press, San Diego.
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2018 Revista de Matemática: Teoría y Aplicaciones