Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Quasilineal theory of Kato
PDF (Español (España))

Keywords

local existence and uniqueness theorems
existence of generalized solutions
applications of PDE in areas other than physics
teorema de existencia local y unicidad
existencia de soluciones generalizadas
aplicaciones de EDP en áreas distintas de la física

How to Cite

Loza Rojas, C. (2018). Quasilineal theory of Kato. Revista De Matemática: Teoría Y Aplicaciones, 25(2), 319–345. https://doi.org/10.15517/rmta.v25i2.33617

Abstract

In the present paper we will analyze the local Cauchy problem associated with the Korteweg-De Vries (KdV) equation in H* with s > 3/2. The objective of this work is to establish the good local formulation of the problem when u0H*, s > 3/2, for this we apply the quasi-linear theory of Kato, which consists of (06) hypotheses, in the linear case and (08) hypotheses in the non-linear case. In the solution of Cauchy’s problem for the quasi-linear equation of evolution, we will rely on Banach’s fixed-point theorem.

https://doi.org/10.15517/rmta.v25i2.33617
PDF (Español (España))

References

Arbogast, T.; Bona, J. (2005) Method of Applied Mathematics. Department of Mathematics the University of Texas at Austin Fall and Spring Semesters, USA.

Bona, J; Smith, R. (1975) “The initial-value problem for the Korteweg-de Vries equation”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 278(1287): 555–601.

Darmois G.(1974) Evolution Equation in a Banach Space. Doctorate Thesis, Departament of Mathematics, University of California, California.

Iório, R.J.; Iório, V. (1988) Equações Diferenciais Parciais: Uma Introdução. Projeto Euclides, IMPA. Rio de Janeiro.

Iório, R.J.; Iório, V. (2001) Fourier Analysis and Partial Differential Equations. Cambridge University Press, New York.

Kato, T. (1975) “Quasi linear equations of evolution with application to partial differential equations”, Spectral Theory and Differential Equations 448: 25–70.

Kato, T.(1983) “On the Cauchy problem for the (Generalized) KdV equations”, Studies in Applied Mathematics, Advances in Mathematics Supplementary Studies 8: 93–128.

Kobayashi, K. (1979) “On a theorem for linear evolution equations of hyperbolic type”, Journal of the Mathematical Society of Japan 31(4): 647– 654.

Montealegre, J.; Petrozzi, S. (1998) Operadores disipativos maximales. Informe de Investigación, N◦2 Serie B, Pontificia Universidad Católica del Perú, Lima.

Montealegre, J.; Petrozzi, S. (1999) Semigrupos de operadores lineales y ecuaciones de evolución semi-lineales. Informe de Investigación, N◦6 Serie B, Pontificia Universidad Católica del Perú, Lima.

Saut, J.C.; Temam, R. (1976) “Remarks on the Korteweg-de Vries equation”, Israel Journal of Mathematics 24(1): 78–87.

Zimmer, R.J. (1990) Essential Results of Functional Analysis. University of Chicago Press, USA.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2018 Revista de Matemática: Teoría y Aplicaciones

Downloads

Download data is not yet available.