Abstract
In the present paper we will analyze the local Cauchy problem associated with the Korteweg-De Vries (KdV) equation in H* with s > 3/2. The objective of this work is to establish the good local formulation of the problem when u0 ∈ H*, s > 3/2, for this we apply the quasi-linear theory of Kato, which consists of (06) hypotheses, in the linear case and (08) hypotheses in the non-linear case. In the solution of Cauchy’s problem for the quasi-linear equation of evolution, we will rely on Banach’s fixed-point theorem.
References
Arbogast, T.; Bona, J. (2005) Method of Applied Mathematics. Department of Mathematics the University of Texas at Austin Fall and Spring Semesters, USA.
Bona, J; Smith, R. (1975) “The initial-value problem for the Korteweg-de Vries equation”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 278(1287): 555–601.
Darmois G.(1974) Evolution Equation in a Banach Space. Doctorate Thesis, Departament of Mathematics, University of California, California.
Iório, R.J.; Iório, V. (1988) Equações Diferenciais Parciais: Uma Introdução. Projeto Euclides, IMPA. Rio de Janeiro.
Iório, R.J.; Iório, V. (2001) Fourier Analysis and Partial Differential Equations. Cambridge University Press, New York.
Kato, T. (1975) “Quasi linear equations of evolution with application to partial differential equations”, Spectral Theory and Differential Equations 448: 25–70.
Kato, T.(1983) “On the Cauchy problem for the (Generalized) KdV equations”, Studies in Applied Mathematics, Advances in Mathematics Supplementary Studies 8: 93–128.
Kobayashi, K. (1979) “On a theorem for linear evolution equations of hyperbolic type”, Journal of the Mathematical Society of Japan 31(4): 647– 654.
Montealegre, J.; Petrozzi, S. (1998) Operadores disipativos maximales. Informe de Investigación, N◦2 Serie B, Pontificia Universidad Católica del Perú, Lima.
Montealegre, J.; Petrozzi, S. (1999) Semigrupos de operadores lineales y ecuaciones de evolución semi-lineales. Informe de Investigación, N◦6 Serie B, Pontificia Universidad Católica del Perú, Lima.
Saut, J.C.; Temam, R. (1976) “Remarks on the Korteweg-de Vries equation”, Israel Journal of Mathematics 24(1): 78–87.
Zimmer, R.J. (1990) Essential Results of Functional Analysis. University of Chicago Press, USA.
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2018 Revista de Matemática: Teoría y Aplicaciones