Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Definable groups in DCFA
PDF
ps
dvi

Keywords

model theory of fields
supersimple theories
difference-differential fields
definable goups
abelian groups
teoría de modelos de cuerpos
teorías supersimples
cuerpos diferenciales de diferencia
grupos definibles
grupos abelianos

How to Cite

Bustamante-Medina, R. F. (2019). Definable groups in DCFA. Revista De Matemática: Teoría Y Aplicaciones, 26(2), 179–195. https://doi.org/10.15517/rmta.v26i2.33639

Abstract

E. Hrushovski proved that the theory of difference-differential fields of characteristic zero has a model-companion. We denote it DCFA. In this paper we study definable abelian groups in a model of DCFA. First we prove that such a group is embeddable on an algebraic group. Then, we study one-basedeness, stability and stable embeddability of abelian definable groups.

https://doi.org/10.15517/rmta.v26i2.33639
PDF
ps
dvi

References

R. Bustamante, Differentially closed fields of characteristic zero with a generic automorphism, Revista de Matemática: Teoría y Aplicaciones 14 (2007), no. 1, 81–100.

R. Bustamante, Algebraic jet spaces and Zilber’s dichotomy in DCFA, Revista de Matemática: Teoría y Aplicaciones 17 (2010), no. 1, 1–12.

R. Bustamante, Rank and dimension in difference-differential fields, Notre Dame Journal of Formal Logic 52 (2011), no. 4, 403–414.

R. Bustamante, Arc spaces and Zilber’s dichotomy in dcfa, submitted, 2019.

Z. Chatzidakis, E. Hrushovski, Model theory of difference fields, Trans. Amer. Math. Soc. 351 (1999), no. 8, 2997–3071.

Z. Chatzidakis, A. Pillay, Generic structures and simple theories, Ann. Pure Appl. Logic 95 (1998), no. 1-3, 71–92.

E. Hrushovski, Unidimensional theories are superstable, Ann. Pure Appl. Logic 50 (1990), no. 2, 117–137.

E. Hrushovski, The Manin-Mumford conjecture and the model theory of difference fields, Ann. Pure Appl. Logic 112 (2001), no. 1, 43–115.

P. Kowalski, A. Pillay, A note on groups definable in difference fields, Proc. Amer. Math. Soc. 130 (2001), no. 1, 205–212.

S. Lang, Abelian Varieties, reprint of the 1959 original, Springer, New York, 1983.

D. Marker, Manin kernels, Connections between model theory and algebraic and analytic geometry, Vol. 6, Dipartimento di Matematica della Seconda Univ. di Napoli, Caserta, 2000.

A. Pillay, Some foundational questions concerning differential algebraic groups, Pacific J. Math. 179 (1997), no. 1, 179–200.

A. Pillay, Definability and definable groups in simple theories, J. Symbolic Logic 63 (1998), no. 3, 788–796.

F. O. Wagner, Simple Theories, Kluwer Academic Publishers, Dordrecht, 2000.

F. O. Wagner, Some remarks on one-basedness, J. Symbolic Logic 69 (2004), no. 1, 34–38.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2019 Revista de Matemática: Teoría y Aplicaciones

Downloads

Download data is not yet available.