Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Hamiltonian cycles that pass through of a linear forest in bipartitos grafos balanced
PDF (Español (España))

Keywords

bipartite graph
linear forest
hamiltonian cycle
grafo bipartito
bosque lineal
ciclo hamiltoniano

How to Cite

Brito, D., Marín, L., & Ramírez, H. (2018). Hamiltonian cycles that pass through of a linear forest in bipartitos grafos balanced. Revista De Matemática: Teoría Y Aplicaciones, 25(2), 347–365. https://doi.org/10.15517/rmta.v25i2.33908

Abstract

Let G = (A B, E) be a bipartite graph whith |A| = |B| = n ≥ 4. A graph is linear forest if every component is a path. Let S be a set of medges of G that induces a linear forest. We prove that if σ1,1(G) = min{dG(u) + dG(v) : uA, vB, uv ̸∈ E(G)} ≥ (n+1)+m,  then G contains (m + 1) hamiltonian cycles Cj such that |E(Cj ) ∩ S| = j, with j = 0, 1, . . . , m.

https://doi.org/10.15517/rmta.v25i2.33908
PDF (Español (España))

References

Chen, G.; Enomoto, H.; Lou, D.; Saito, A. (2001) “Vertex-disjoint cycles containing specified edges in a bipartite graph”, Australasian Journal of Combinatorics 23(1): 37–48.

Diestel, R. (2000) Graph Theory. Springer-Verlag, New York.

Posa, L. (1963) “On the circuits of finite graphs (russian summary)”, Magyar Tud. Akad. Mat. Kutató Int. Köz 8(1): 355–361.

Sugiyama, T. (2004) “Hamiltonian cycles through a linear forest”, SUT Journal of Mathematics 40(2): 103–109.

Wang, H. (1999) “Covering a bipartite graph with cycles passing through given edges”, Australasian Journal of Combinatorics 19(1): 115–121.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2018 Revista de Matemática: Teoría y Aplicaciones

Downloads

Download data is not yet available.