Abstract
Let G = (A ∪ B, E) be a bipartite graph whith |A| = |B| = n ≥ 4. A graph is linear forest if every component is a path. Let S be a set of medges of G that induces a linear forest. We prove that if σ1,1(G) = min{dG(u) + dG(v) : u ∈ A, v ∈ B, uv ̸∈ E(G)} ≥ (n+1)+m, then G contains (m + 1) hamiltonian cycles Cj such that |E(Cj ) ∩ S| = j, with j = 0, 1, . . . , m.
References
Chen, G.; Enomoto, H.; Lou, D.; Saito, A. (2001) “Vertex-disjoint cycles containing specified edges in a bipartite graph”, Australasian Journal of Combinatorics 23(1): 37–48.
Diestel, R. (2000) Graph Theory. Springer-Verlag, New York.
Posa, L. (1963) “On the circuits of finite graphs (russian summary)”, Magyar Tud. Akad. Mat. Kutató Int. Köz 8(1): 355–361.
Sugiyama, T. (2004) “Hamiltonian cycles through a linear forest”, SUT Journal of Mathematics 40(2): 103–109.
Wang, H. (1999) “Covering a bipartite graph with cycles passing through given edges”, Australasian Journal of Combinatorics 19(1): 115–121.
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2018 Revista de Matemática: Teoría y Aplicaciones