Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Methodology to establish a dynamic wage scale for the collective capitalization regime of the educators of Costa Rica
PDF (Español (España))

Keywords

principal components analysis
stochastic modeling
salary scale
pensions
magisterium
análisis de componentes principales
modelación estocástica
escala salarial
pensiones
magisterio

How to Cite

Bermúdez-Aguilar, E., Morales-Garay, I., & Barboza-Solórzano, T. (2018). Methodology to establish a dynamic wage scale for the collective capitalization regime of the educators of Costa Rica. Revista De Matemática: Teoría Y Aplicaciones, 25(2), 215–238. https://doi.org/10.15517/rmta.v25i2.33909

Abstract

The Teachear’s Pension Fund integrates all the workers of the national magisterium of Costa Rica who were hired after july 14th, 1992. The magisterium are integrated by funcionaries of the Ministry of Public Education, private schools, funcionaries of the National Institute of Learning and the Public Universities of the country. In order to elaborate the Actuarial Report of the fund, we require to project the future salaries of these workers. However, in order to perform this task we have find some difficulties such as: the workers not necessarily keep the same time working during the scholar year, the variability of the time designation and the lapse of time they are out of the scholar room. In view of this salary behavior, a Principal Component Analysis (PCA) was carried out to establish which variables best explain this phenomenon, and a binomial model of increase or decrease the salary anually was elaborated, which is the basis for the construction of a salary scale for the Magisterium.

https://doi.org/10.15517/rmta.v25i2.33909
PDF (Español (España))

References

Björk, T. (2009) Arbitrage Theory in Continuous Time. Oxford University Press, New York.

Bowers, N.; Gerber, H.; Hickman, J.; Jones, D.; Nesbitt, C. (1997) Actuarial Mathematics. Society of Actuaries, Illinois.

Denuit, M.; Dhaene, J.; Goovaerts, M.; Kaas, R. (2006) Actuarial Theory for Dependent Risks: Measures, Orders and Models. John Wiley & Sons, England.

Diz, E. (2014) Teoría de Riesgo. Ecoe Ediciones, Bogotá.

Subramaniam, I. (2008) “Stochastic actuarial modelling of a defined-benefit social securty pension scheme: an analytical approach”, Annals of Actuarial Science 3: 127–185.

Trejos J.; Castillo, W.; González, J. (2014) Análisis Multivariado de Datos: Métodos y Aplicaciones. Editorial UCR, San José, Costa Rica.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2018 Revista de Matemática: Teoría y Aplicaciones

Downloads

Download data is not yet available.