Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Una implementación computacional del método VEM mixto para el problema de Brinkman en 2D
PDF (Español (España))
ps (Español (España))
dvi (Español (España))

Keywords

Brinkman model
mixed virtual element method
high-order approximations
computational implementation
modelo de Brinkman
método mixto de elementos virtuales
aproximaciones de alto orden
implementación computacional

How to Cite

Sequeira, F. A., & Guillén-Oviedo, H. (2019). Una implementación computacional del método VEM mixto para el problema de Brinkman en 2D. Revista De Matemática: Teoría Y Aplicaciones, 26(2), 215–251. https://doi.org/10.15517/rmta.v26i2.35968

Abstract

In this paper we describe some specific aspects on the computational implementation of the a mixed virtual element method (mixed-VEM) for the two-dimensional linear Brinkman model with non-homogeneous Dirichlet boundary conditions. The formulation used below was originally proposed and analysed in CÁCERES, E., GATICA, G.N. AND SEQUEIRA, F.A., A mixed virtual element method for the Brinkman problem. Math. Models Methods Appl. Sci. 27 (2017), no. 4, 707–743. The implementation presented here consider any polynomial degree k >= 0 in a natural way by building several local matrices of small size. In addition, an algorithm is proposed for the assembly of the associated global linear system, which guarantees the continuity of the normal component in the discrete solution.

https://doi.org/10.15517/rmta.v26i2.35968
PDF (Español (España))
ps (Español (España))
dvi (Español (España))

References

V. Anaya, G. N. Gatica, D. Mora, R. Ruiz-Baier„ An augmented velocityvorticity- pressure formulation for the Brinkman equations, Internat. J. Numer. Methods Fluids 79 (2015), no. 3, 109–137.

V. Anaya, D. Mora, C. Reales, R. Ruiz-Baier, Stabilized mixed approximation of axisymmetric Brinkman flow, ESAIM Math. Model. Numer. Anal. 49 (2015), no. 3, 855–874.

V. Anaya, D. Mora, R. Oyarzúa, R. Ruiz-Baier, A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem, Numer. Math. 133 (2016), no. 4, 781–817.

P.F. Antonietti, L. Beirão da Veiga, D. Mora, M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes, SIAM J. Numer. Anal. 52 (2014), no. 1, 386–404.

E. Artioli, L. Beirão da Veiga, C. Lovadina, E. Sacco, E.Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem, Comput. Mech. 60 (2017), no. 3, 355–377.

L. Beirão da Veiga, F. Brezzi, A. Cangiani, L. D. Marini, G. Manzini, A. Russo, Basic principles of virtual elements methods, Math. Models Methods Appl. Sci. 23 (2013), no. 1, 199–214.

L. Beirão da Veiga, F. Brezzi, L.D. Marini, Virtual elements for linear elasticity problems, SIAM J. Numer. Anal. 51 (2013), no. 2, 794–812.

L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, The hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci. 24 (2014), no. 8, 1541–1573.

L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, H(div) and H(curl)-conforming virtual element methods, Numer. Math. 133 (2016), no. 2, 303–332.

L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, Mixed virtual element methods for general second order elliptic problems on poligonal meshes, ESAIM Math. Model. Numer. Anal. 50 (2016), no. 3, 727–747.

L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo,Serendipity face and edge VEM spaces, arXiv preprint, arXiv: 1606.01048v1, 2016.

L. Beirão da Veiga, C. Lovadina, G. Vacca, Virtual elements for the Navier-Stokes problem on polygonal meshes, SIAM J. Numer. Anal. 56 (2018), no.3, 1210–1242.

F. Brezzi, A. Cangiani, G. Manzini, A. Russo, Mimetic finite differences and virtual element methods for diffusion problems on polygonal meshes, I.M.A.T.I.-C.N.R, Technical Report 22PV12/0/0, (2012), 1–27.

F. Brezzi, R.S. Falk, L.D. Marini, Basic principles of mixed virtual element methods, ESAIM Math. Model. Numer. Anal. 48 (2014), no. 4, 1227–1240.

F. Brezzi, L.D. Marini, Virtual element methods for plate bending problems, Comput. Methods Appl. Mech. Engrg. 253 (2013), 455–462.

E. Cáceres, Mixed virtual element methods. Applications in fluid mechanics, tesis, Ingeniero Civil Matemático, Universidad de Concepción, 2015.

E. Cáceres, G.N. Gatica, A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem, IMA J. Numer. Anal. 37 (2017), no. 1, 296–331.

E. Cáceres, G.N. Gatica, F.A. Sequeira, A mixed virtual element method for the Brinkman problem, Math. Models Methods Appl. Sci. 27 (2017), no. 4, 707–743.

E. Cáceres, G.N. Gatica, F.A. Sequeira, A mixed virtual element method for quasi-Newtonian Stokes flows, SIAM J. Numer. Anal. 56 (2018), no. 1, 317–343.

E. Cáceres, G.N. Gatica, F.A. Sequeira, A mixed virtual element method for a pseudostress-based formulation of linear elasticity, Applied Numerical Mathematics 135 (2019), 423–442.

E.B. Chin, J.B. Lasserre, N. Sukumar, Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra, Comput. Mech. 56 (2015), no. 6, 967–981.

A.L. Gain, C. Talischi, G.H. Paulino, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Comput. Methods Appl. Mech. Engrg. 282 (2014), 132–160.

G.N. Gatica, L.F. Gatica, A. Márquez, Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow, Numer. Math. 126 (2014), no. 4, 635–677.

G.N. Gatica, L.F. Gatica, F.A. Sequeira, Analysis of an augmented pseudostress-based mixed formulation for a nonlinear Brinkman model of porous media flow, Comput. Methods Appl. Mech. Engrg. 289 (2015),104–130.

G.N. Gatica, M. Munar, F.A. Sequeira, A mixed virtual element method for the Navier-Stokes equations, Math. Models Methods Appl. Sci. 28 (2018), no. 14, 2719–2762.

G.N. Gatica, M. Munar, F.A. Sequeira, A mixed virtual element method for a nonlinear Brinkman model of porous media flow, Calcolo 55 (2018), no. 2, article 21.

J. Guzmán, M. Neilan, A family of nonconforming elements for the Brinkman problem, IMA J. Numer. Anal. 32 (2012), no. 4, 1484–1508.

M. Juntunen, R. Stenberg, Analysis of finite element methods for the Brinkman problem, Calcolo 47 (2010), no. 3, 129–147.

J. Könnö, R. Stenberg, H(div)-conforming finite elements for the Brinkman problem, Math. Models Methods Appl. Sci. 21 (2011), no.11, 2227–2248.

S.E. Mousavi, N. Sukumar, Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Comput. Mech. 47 (2011), no. 5, 535–554.

F.A. Sequeira, P.E. Castillo, Implementación del método LDG para mallas no estructuradas en 3D, Revista de Matemática: Teoría y Aplicaciones 19 (2012), no. 2, 141–156.

A. Sommariva, M. Vianello, Product Gauss cubature over polygons based on Green’s integration formula, BIT Numerical Mathematics 47 (2007), no. 2, 441–453.

P. Vassilevski, U. Villa, A mixed formulation for the Brinkman problem, SIAM J. Numer. Anal 52 (2014), no. 1, 258–281.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2019 Revista de Matemática: Teoría y Aplicaciones

Downloads

Download data is not yet available.