Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Estimation of stochastic volatility models via auxiliary particles filter
PDF (Español (España))
dvi (Español (España))
ps (Español (España))

Keywords

stochastic volatility models
space state models
auxiliary particles filter.
modelos de volatilidad estocástica
modelos espacio estado
filtro auxiliar de partículas

How to Cite

Trosel, Y., Hernández, A., & Infante, S. (2019). Estimation of stochastic volatility models via auxiliary particles filter. Revista De Matemática: Teoría Y Aplicaciones, 26(1), 45–18. https://doi.org/10.15517/rmta.v26i1.36221

Abstract

The growing interest in the study of volatility for series of financial instruments leads us to propose a methodology based on the versatility of the Sequential Monte Carlo (SMC) methods for the estimation of the states of the general stochastic volatility model (GSVM). In this paper, we proposed a methodology based on the state space structure applying filtering techniques such as the auxiliary particles filter for estimating the underlying volatility of the system. Additionally, we proposed to use a Markov chain Monte Carlo (MCMC ) algorithm, such as is the Gibbs sampler for the estimation of the parameters. The methodology is illustrated through a series of returns of simulated data, and the series of returns corresponding to the Standard and Poor’s 500 price index (S&P 500) for the period 1995 − 2003. The results show that the proposed methodology allows to adequately explain the dynamics of volatility when there is an asymmetric response of this to a shock of a different sign, concluding that abrupt
changes in returns correspond to high values in volatility.

https://doi.org/10.15517/rmta.v26i1.36221
PDF (Español (España))
dvi (Español (España))
ps (Español (España))

References

Black, F.; Scholes, M. (1973) “The pricing of options and corporate liabilities”, The Journal of Political Economy 81(3): 637–654.

Carneiro, P.; Hansen, K.; Heckman, J. (2003) “Estimating distributions of treatment effects with an application to the returns to schooling and measurement of the effects of uncertainty on college choice”, International Economic Review 44(2): 361–422.

Chib, S.; Nardari, F.; Shephard, N. (2002) “Markov chain Monte Carlo methods for stochastic volatility models”,Journal of Econometrics 108(2): 281–316.

Clark, P. (1973) “A subordinated stochastic process model with finite variance for speculative prices”, Econometrica 41(1): 135–155.

Danielsson, J. (1994) “Stochastic volatility in asset prices: estimation with simulated maximum likelihood”, Journal of Econometrics 64: 375–400.

Danielsson, J.; Richard, J. F. (1993) “Accelerated gaussian importance sampler with application to dynamic latent variable models”, Journal of Applied Econometrics 8(1): 153–173.

Del Moral, P.; Doucet, A. (2003) “On a class of genealogical and interacting metropolis models”, in: J. Azéma, M. Emery, M. Ledoux & M. Yor (Eds.) Séminaire de Probabilités XXXVII, Springer, Berlin: 415–446

Doucet, A.; De Freitas, N.; Gordon, N. (2001) “An introduction to sequential Monte Carlo methods”, in: A. Doucet, N. De Freitas & N. Gordon (Eds.) Sequential Monte Carlo Methods in Practice, Springer, New York: 3–14.

Doucet, A.; Johansen, A. (2011) “A tutorial on particle filtering and smoothing: fifteen years later”, in: D. Crisan & B. Rozovskii (Eds.) The Oxford Handbook of Nonlinear Filtering, Oxford University Press, New York: 656–704.

Gallant, A.; Hsieh, D.; Tauchen, G. (1991) “On fitting a recalcitrant series: the pound/dollar exchange rate, 1974–1983”, in: W. Bartnett, J. Powell & G. Tauchen (Eds.) Nonparametric and Semiparametric Methods in Econometrics and Statistics, Cambridge University Press, New York: 199–240.

Ghysels,E.;Harvey,A.C.;Renault,E.(1996)“Stochastic volatility”,in: C. R.Rao & G.Maddala(Eds.) Statistical Models in Finance,North-Holland, Amsterdam: 119–191.

Gordon, N. J.; Salmond, D. J.; Smith, A. F. M. (1993) “Novel approach to nonlinear/non-Gaussian Bayesian state estimation”, IEE Proceedings-F 140(2): 107–113.

Harvey,A.;Ruiz,E.;Shephard,N.(1994)“Multivariate stochastic variance models”, The Review of Economic Studies 61(2): 247–264.

Heidelberger, P.; Welch, P. (1983) “Simulation run length control in the presence of an initial transient”, Operations Research 31 (6):1109–1144.

Hull,J.;White,A.(1987)“The pricing of options on assets with stochastic volatilities”, The Journal of Finance 42(2): 281–300.

Isard,M.;Blake,A.(1998)“Condensation-conditional density propagation for visual tracking”, International Journal of Computer Vision 29 (1): 5–28.

Jacquier, E.; Polson, N.; Rossi, P. (1994) “Bayesian analysis of stochastic volatility models”, Journal of Business and Economic Statistics 12(4): 371–389.

Kim, S.; Shephard, N.; Chib, S. (1998) “Stochastic volatility: likelihood inference and comparison with ARCH models”, The Review of Economic Studies 65(3): 361–393.

Latané, H.; Rendleman, R. (1976) “Standard deviations of stock price ratios implied in option prices”, The Journal of Finance 31(2): 369–381.

Liu, J. S. (2001) Monte Carlo Strategies in Scientific Computing.Springer, New York.

Liu, J. S.; Chen, R. (1998) “Sequential Monte Carlo methods for dynamic systems”, Journal of the American Statistical Association 93 (443): 1032– 1044.

Omori,Y.;Chib,S.; Shephard,N.; Nakajima,J. (2007) “Stochastic volatility with leverage: fast and efficient likelihood inference”, Journal of Econometrics 140 (2): 425–449.

Pitt, M.; Shephard, N. (1999) “Filtering via simulation: auxiliary particle filters”, Journal of the American Statistical Association 94 (446): 590–599.

Shephard, N.; Pitt, M.K. (1997) “Likelihood analysis of non-Gaussian measurement time series”, Biometrika 84(3): 653–667.

Shephard, N. (2005) Stochastic Volatility: Selected Readings. Oxford University Press, United States

Tauchen, G.; Pitt, M. (1983) “The price variability-volume relationship on speculative markets”, Econometrica 51(2): 485–505.

Taylor, S. (1986) Modelling Financial Time Series. John Wiley & Sons, New York.

Watanabe, T. (1999) “A non-linear filtering approach to stochastic volatility models with an application to daily stock returns”, Journal of Applied Econometrics 14(2): 101–121.

Yu, J. (2005) “On leverage in a stochastic volatility model”, Journal of Econometrics 127(2): 165–178.

Comments

Downloads

Download data is not yet available.