Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Traveling wave type solution in a model diffusive predator - prey type Holling II
PDF (Español (España))
DVI (Español (España))
PS (Español (España))

Keywords

Gause model
limit cycle
Hartman Grobman theorem
LaSalle principle
Hopf bifurcation theorem
modelo de Gause
ciclo límite
teorema de Hartman Grobman
principio de LaSalle
teorema de la bifurcación de Hopf

How to Cite

Cortés-García, C., & Ramírez-Fierro, A. (2021). Traveling wave type solution in a model diffusive predator - prey type Holling II. Revista De Matemática: Teoría Y Aplicaciones, 28(2), 209–236. https://doi.org/10.15517/rmta.v28i2.38645

Abstract

This paper demonstrates the existence of traveling waves as solutions for a predator - prey model with a Holling II predation function and a onedimensional diffusive term for predators. When performing a qualitative analysis on the model without diffusion, it follows that the model with diffusion presents periodic solutions. Similarly, by assuming a traveling wave-type solution to the diffusion model, it is shown that it has a heteroclinical orbit that connects two equilibrium points, attracted to one of them, and therefore presents wave fronts.

https://doi.org/10.15517/rmta.v28i2.38645
PDF (Español (España))
DVI (Español (España))
PS (Español (España))

References

S. Dunbar, Traveling waves in diffusive predator-prey equations: Periodic orbits and point-to-periodic heteroclinic orbits, SIAM Journal on Applied Mathematics 46(1986), no. 6, 1057–1078. Doi: 10.1137/0146063

M.R. Garvie, Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in Matlab, Bulletin of Mathematical Biology 69(2007), no. 3, 931–956. Doi: 10.1007/s11538-006-9062-3

G. Griffiths, W. Schiesser, Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with Matlab and Maple, Academic Press, New York, 2010. Doi: 10.1016/C2009-0-64536-0

P. Hartman, Ordinary Differential Equations, 2nd ed., Birkhäuser, Boston, 1982. Doi: 10.1137/1.9780898719222

Y. Kuang, H.I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems, Mathematical Biosciences, 88(1988), no. 1, 67–84. Doi: 10.1016/0025-5564(88)90049-1

Y. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences 112, Springer, New York, 1995. Doi: 10.1007/978-1-4757-3978-7

J.P. LaSalle, Stability theory for ordinary differential equations, Journal of Differential Equations 4(1968), no. 1, 57 65. Doi: 10.1016/0022-0396(68)90048-X

W.T. Li, S.L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-III functional response, Chaos, Solitons & Fractals 37(2008), no. 2, 476–486. Doi: 10.1016/j.chaos.2006.09.039

P.P. Liu, An analysis of a predator-prey model with both diffusion and migration, Mathematical and Computer Modelling 51(2010), no. 9-10, 1064–1070. Doi: 10.1016/j.mcm.2009.12.010

J. Sotomayor, Lições de equações diferenciais ordinárias, Projeto Euclides, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 11(1979).

C. Wu, Y. Yang, P. Weng, Traveling waves in a diffusive predatorprey system of Holling type: Point-to-point and point-to-periodic heteroclinic orbits, Chaos, Solitons & Fractals 48(2013), 43–53. Doi: 10.1016/j.chaos.2013.01.003

X. Wu, Y. Luo, Y. Hu, Traveling waves in a diffusive predator-prey model incorporating a prey refuge, Abstract and Applied Analysis, 2014, Article ID 679131, Doi: 10.1155/2014/679131

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2021 Revista de Matemática: Teoría y Aplicaciones

Downloads

Download data is not yet available.