Abstract
This paper demonstrates the existence of traveling waves as solutions for a predator - prey model with a Holling II predation function and a onedimensional diffusive term for predators. When performing a qualitative analysis on the model without diffusion, it follows that the model with diffusion presents periodic solutions. Similarly, by assuming a traveling wave-type solution to the diffusion model, it is shown that it has a heteroclinical orbit that connects two equilibrium points, attracted to one of them, and therefore presents wave fronts.
References
S. Dunbar, Traveling waves in diffusive predator-prey equations: Periodic orbits and point-to-periodic heteroclinic orbits, SIAM Journal on Applied Mathematics 46(1986), no. 6, 1057–1078. Doi: 10.1137/0146063
M.R. Garvie, Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in Matlab, Bulletin of Mathematical Biology 69(2007), no. 3, 931–956. Doi: 10.1007/s11538-006-9062-3
G. Griffiths, W. Schiesser, Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with Matlab and Maple, Academic Press, New York, 2010. Doi: 10.1016/C2009-0-64536-0
P. Hartman, Ordinary Differential Equations, 2nd ed., Birkhäuser, Boston, 1982. Doi: 10.1137/1.9780898719222
Y. Kuang, H.I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems, Mathematical Biosciences, 88(1988), no. 1, 67–84. Doi: 10.1016/0025-5564(88)90049-1
Y. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences 112, Springer, New York, 1995. Doi: 10.1007/978-1-4757-3978-7
J.P. LaSalle, Stability theory for ordinary differential equations, Journal of Differential Equations 4(1968), no. 1, 57 65. Doi: 10.1016/0022-0396(68)90048-X
W.T. Li, S.L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-III functional response, Chaos, Solitons & Fractals 37(2008), no. 2, 476–486. Doi: 10.1016/j.chaos.2006.09.039
P.P. Liu, An analysis of a predator-prey model with both diffusion and migration, Mathematical and Computer Modelling 51(2010), no. 9-10, 1064–1070. Doi: 10.1016/j.mcm.2009.12.010
J. Sotomayor, Lições de equações diferenciais ordinárias, Projeto Euclides, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 11(1979).
C. Wu, Y. Yang, P. Weng, Traveling waves in a diffusive predatorprey system of Holling type: Point-to-point and point-to-periodic heteroclinic orbits, Chaos, Solitons & Fractals 48(2013), 43–53. Doi: 10.1016/j.chaos.2013.01.003
X. Wu, Y. Luo, Y. Hu, Traveling waves in a diffusive predator-prey model incorporating a prey refuge, Abstract and Applied Analysis, 2014, Article ID 679131, Doi: 10.1155/2014/679131
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2021 Revista de Matemática: Teoría y Aplicaciones