Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Descripción matemática de la cinética del factor de crecimiento epidérmico
PDF (Español (España))

Keywords

Epidermic growth factor
cicatrization
pharmacokinetics
Factor de crecimiento epidérmico
cicatrización
farmacocinética

How to Cite

Mederos Brú, M. M., Hernández Rubio, Y. L., Roldán Inguanzo, R., & Fernández Sánchez, E. (2007). Descripción matemática de la cinética del factor de crecimiento epidérmico. Revista De Matemática: Teoría Y Aplicaciones, 14(2), 137–146. https://doi.org/10.15517/rmta.v14i2.39306

Abstract

The epidermic growth factor (EGF), study since 1986, is always present in some epidermis cells and results a powerful stimulator of cicatrization. It is obtained industrially in Cuba in the Center of Genetic Engineering and Biotechnology. The pharmacokinetic approach for administering EGF can be characterized by an input function with fast distribution phase from blood to the target organs when administered via endovenous, reaching maximum concentration which determines the drug availability. These processes can be mathematically represented by the input function and a weight function of the administered dose, expressed as a sum of exponentials. An accumulated behavior in terms of the convolution integral of those functions characterize the response of the absorption processes in vivo. With the aim of possible changes in the absorptive behavior of the drug used, modifications of the medicamental dose can be attained by numerical deconvolution of the response and the weight function. In this article, the use of the deconvolution method for investigating kinetical patterns of the EGF administered via cutaneous absorption by simulation is presented, which allows predicting and evaluating a designed pharmaceutic form.

https://doi.org/10.15517/rmta.v14i2.39306
PDF (Español (España))

References

Céspedes, M.A. (1989) Transformada de Laplace con Aplicaciones. Pueblo y Educación, La Habana.

Conte, S.D.; De Boor, C. (1983) Elementary Numerical Analysis and Algorithmic Approach. McGraw-Hill-Kogakusha, New York.

Churchill, R. (1958) Operational Mathematic. McGraw-Hill, New York.

Ducongé, J.; Prats, P.A.; Valenzuela, C.; Aguilera, A.; Rojas, I.; Bécquer, M.A.; Alvárez, D.; Estrada, I.; Alfonso Ortiz, S.; Hardy Rando, E.; García Pulpeiro, O.; Fernández Sánchez, E. (2004) “Topical disposition of two strenghts of a 125I-rhEGF jelly in rat skin wounds”, Biopharmaceutics and Drug Disposition 25: 193–201.

Fernández Sánchez, E. (2002) Biofarmacia. Félix Varela, La Habana.

Prats, P.A.; Ducongé, J.; Valenzuela, C.; Berlanga, J.; Edrosa, C.R.; Fernández Sánchez, E. (2002) “Disposition and receptor-site binding of 125I-EGF after topical administration to skin wounds”, Biopharmaceutics and Drug Disposition 23: 67–76.

Veng Pedersen, P. (1980) “Model-independent method of analyzing input in linear pharmacokinetic systems having polyexponential impulse response I: theoretical analysis”, Journal of Pharmaceutical Sciences 69(3): 298–305.

Veng Pedersen, P. (1980) “Model-independent method of analyzing input in linear pharmacokinetic systems having polyexponential impulse response II: numerical evaluation”, Journal of Pharmaceutical Sciences 69(3): 305–312.

Veng Pedersen, P. (1980) “Novel deconvolution method for linear pharmacokinetic systems with polyexponential impulse response”, Journal of Pharmaceutical Sciences 69(3): 312–317.

Comments

Downloads

Download data is not yet available.