Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Optimización de costos en la experimentación industrial
PDF (Español (España))

Keywords

Loss function
tolerance
experimental design
regression models
optimization
Función de pérdida
tolerancia
diseño de experimentos
modelos de regresión
optimización

How to Cite

Domínguez Domínguez, J. (2007). Optimización de costos en la experimentación industrial. Revista De Matemática: Teoría Y Aplicaciones, 14(2), 193–201. https://doi.org/10.15517/rmta.v14i2.39322

Abstract

We outline different cases to study the costs in industrial processes. Loss function considers the costs of no quality, we present the model that describes the costs associated to the levels (value) of the factors (variables) that are related to the characteristics of the process. Also, we show the due costs to not fulfilling with specifications and regarding to tolerances of the components of a product. In each one of these situations, we formulate the procedures to optimize costs without rebounding in the properties of quality in the production. As much the function objective as the restrictions are regression model that are obtained through statistical methods of experimental design.

https://doi.org/10.15517/rmta.v14i2.39322
PDF (Español (España))

References

Allen, T.; Yu, L. (2002) “Low-cost response surface method from simulation optimization”, Qual. Reliab. Engng. Int. 18: 5–17.

Domínguez, D.J. (2004) “Estrategia experimental una opción para la mejora continua de procesos industriales”, Gaceta del Concyteg.

Kim, Y.J.; Cho, B.R. (2000) “Economic considerations on parameter design”, Qual. Reliab. Engng. Int. 16: 501–514.

Kraus, P.D.; Benneyan, J.C.; Mackertich, N.A. (2000) “Use of mathematical programming in the analysis of constrained and unconstrained industrial experimental”, Quality Engineering 12(3): 395–406.

Li, W.; Wu C.F.J. (1999) “An integrated method of parameter design and tolerance design”, Quality Engineering 11(3): 417–425.

Myers, R.H. (1999) “Response surface methodology-current status and future directions”, Journal of Quality Technology 31: 30–44

Ribeiro, J.L.; Fogliatto, F.S.; Caten, C.S. (2001) “Minimizing manufacturing and quality costs in multiresponse optimization”, Quality Engineering 13(4): 559–569.

Romano, D.; Varetto, M.; Vicario, G. (2004) “Multiresponse robust design: a general framework based on combined array”, Journal of Quality Technology 36(1): 27–37.

Taguchi, G. (1986) Introduction to Quality Engineering. Asian Productivity Organization, Tokyo.

Comments

Downloads

Download data is not yet available.