Abstract
In this paper we relate the Matrix Theory and the Graphs Theory, particularlly we work with the characteristic polynomial of precedence matrix with the spectrum of (h, j) adjoint digraphs. The object of this work is to enunciate and demonstrate, with adequate matrix representations, a theorem that allows to determinate the eigenvalues of an (h, j) adjoin digraph of a multidigraph k–regular, resulting the respective multiplicities and also the shape of the eigenvectors associated.
References
Beineke, W.; Harary, F. (1966) “Binary matrices with equal determinant and permanent”, Studia Scientiarum Mathematicarum Hungarica I: 179–183.
Chiappa, R.A. (1982) “Palabras circulares equilibradas. Grafos adjuntos”. INMABBCONICET.
Chiappa, R.A.; Sanza, C. (1999) Grafos y Matrices. Universidad Nacional del Sur, Bahía Blanca.
Chung, F.R. (1997) Spectral Graph Theory, Regional Conference Series in Mathematics No. 92. American Mathematical Society, Providence RI.
Hemminger, R.; Beineke, L. (1978) “Line graphs and line digraphs”, in: L.W. Beineke & R.J. Wilson (Eds.) Selected Topics in Graph Theory, Ch. 10. Academic Press, New York: 271–305.
Osio, E.; Braicovich, T.; Bernardi, C.; Costes, C. (2003) “Sobre digrafos adjuntos y (h, j) adjuntos de multidigrafos k–regulares”, Revista Colombiana de Matemática 37: 81–86.