Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Some applications of periodic orbits for competitive systems
PDF
PS
DVI

Keywords

competitive systems
periodic orbit
angiogenesis
cancer treatment modeling
population replacement modeling
Aedes aegypti
Wolbachia
sistemas competitivos
órbita periódica
angiogénesis
modelado de tratamientos de cáncer
modelo de reemplazo de población
Aedes aegypti
Wolbachia

How to Cite

Díaz-Marín, H. G., & Osuna, O. (2021). Some applications of periodic orbits for competitive systems. Revista De Matemática: Teoría Y Aplicaciones, 29(1), 53–68. https://doi.org/10.15517/rmta.v29i1.40956

Abstract

We prove existence of periodic orbits for non-autonomous two dimensional competitive dynamical systems with periodic time dependence. The proof is an adaptation of a similar assertion stated for cooperative systems in [6]. We also give two main applications: one model for cancer cell populations under periodic chemotherapy as treated in [4] and [3] for the cooperative case, and another model for mosquito population replacement dynamics interacting with control sterile mosquitoes with periodic release [1], for the competitive case.

https://doi.org/10.15517/rmta.v29i1.40956
PDF
PS
DVI

References

L. Almeida, Y. Privat, M. Strugarek, N. Vauchelet, Optimal releases for population replacement strategies: Application to Wolbachia, SIAM Journal on Mathematical Analysis 51(2019), no. 4, 3170–3194. Doi: 10.1137/18M1189841

H. Díaz-Marín, C.O. Osuna Castro, Periodic solutions for a model of cell population subjected to general periodic radiation, Revista Integración 38(2020), no. 2, 81–91. Doi: 10.18273/revint.v38n2-20200001

A. d'Onofrio, A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Mathematical Biosciences 191(2004), no. 2, 159–184. Doi: 10.1016/j.mbs.2004.06.003

P. Hahnfeldt, D. Panigrahy, J. Folkman, L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer research 59(1999), no. 19, 4770–4775.

M.W. Hirsch, Systems of differential equations that are competitive or cooperative. V. Convergence in 3-dimensional systems, Journal of differential equations 80(1989), no. 1, 94–106. Doi: 10.1016/0022-0396(89)90097-1

P. Korman, A periodic model for the dynamics of cell volume, arXiv, 2016. In: 1605.01324, 2016 [math.DS]

H.L. Smith, Dynamics of competition, in: V. Capasso (Eds.) Mathematics Inspired by Biology, Lecture Notes in Mathematics 1714, Springer, Berlin, 1999, pp. 191–240. Doi: 10.1007/BFb0092378

Comments

Downloads

Download data is not yet available.