Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Free operads in differential graded modules
PDF (Español (España))
PS (Español (España))
DVI (Español (España))

Keywords

operads
differential graded modules
free operads functor
operads
módulos diferenciales graduados
funtor de operads libres

How to Cite

Sánchez-Guevara, J. (2021). Free operads in differential graded modules. Revista De Matemática: Teoría Y Aplicaciones, 29(1), 19–37. https://doi.org/10.15517/rmta.v29i1.41404

Abstract

Operads are algebraic structures who have manifested their importance in the study and classification of the homotopic properties of loop spaces. This paper makes a survey of the notion of free operad, both for the symmetric case and for the non-symmetric case, since this type of construction represents a valuable method in the design of operads in different situations. In order to do this, the symmetric operads are interpreted as monoids on the category of S-modules. This work has as objective to show some of the main properties between the functors associated with the constructions of free symmetric operads for understanding the mechanisms of this type of structure. Which leads to the main result of this paper, where the symmetric free operad functor is expressed in terms of the non-symmetric free operad functor, when the actions by the symmetric groups are free.

https://doi.org/10.15517/rmta.v29i1.41404
PDF (Español (España))
PS (Español (España))
DVI (Español (España))

References

C. Berger, I. Moerdijk, The Boardman-Vogt resolution of operads in monoidal model categories, Topology 45(2006), no. 5, 807–849. Doi: 10.1016/j.top.2006.05.001

J.L. Loday, B. Vallette, Algebraic operads, Springer, 2012. Doi: 10.1007/978-3-642-30362-3

S. Mac Lane, Categories for the working mathematician, Springer, 1998. Doi: 10.1007/978-1-4612-9839-7

M. Markl, S. Shnider, J.D. Stasheff, Operads in Algebra, Topology and Physics, American Mathematical Society, Providence RI, 2007. In: 10.1090/surv/096

P. May, The geometry of iterated loop space, Springer-Verlag Berlin Heidelberg, 1972. Doi: 10.1007/BFb0067491

A. Prouté, Sur la transformation d’Eilenberg-Mac Lane, C. R. Acad. Sc. Paris 297(1983), 193–194. In: http://163.172.10.123:8080/EilenbergMacLane.pdf

A. Prouté, Sur la diagonale d’Alexander-Whitney, C. R. Acad. Sc. Paris 299(1984), 391–392. In: http://163.172.10.123:8080/AlexanderWhitney.pdf

A. Prouté Introduction à la Logique Catégorique., IMJ-Université Paris 7, 2010. In: https://docplayer.fr/44463391-Introduction-a-la-logiquecategorique.html

C. Rezk, Spaces of algebra structures and cohomology of operads, Ph.D. thesis, Dept. of Mathematics, Massachusetts Institute of Technology, Cambridge MA, 1996. In: https://dspace.mit.edu/handle/1721.1/41793

J. Sánchez-Guevara, About L-Algebras, Ph.D thesis in Mathematics, Université Paris-Diderot, Paris VII, 2016. In: http://www.theses.fr/2016USPCC204

J.D. Stasheff, Homotopy associativity of H-Spaces. I, American Mathematical Society 108(1963), no. 2, 275–292. Doi: 10.2307/1993608

Comments

Downloads

Download data is not yet available.