Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Maximum likelihood estimation of ruin probability in the classical risk model with exponential claims
PDF (Español (España))
PS (Español (España))
DVI (Español (España))

Keywords

ruin probability
maximum likelihood estimation
classical ruin model
delta method
estimación máxima verosimilitud
probabilidad de ruina
modelo clásico de ruina
método delta

How to Cite

Pantí-Trejo, H. G., Guerrero-Lara, E. A., & López-Flores, J. E. (2022). Maximum likelihood estimation of ruin probability in the classical risk model with exponential claims. Revista De Matemática: Teoría Y Aplicaciones, 29(2), 239–260. https://doi.org/10.15517/rmta.v29i2.47938

Abstract

Maximum likelihood estimators are calculated for the parameters that define the compound Poisson process in the classical risk process with exponential claims. It is proved consistency and asymptotic normality for estimators obtained. Finally, with the help of invariance property of the maximum likelihood estimators, asymptotic normality and delta method, point and interval estimation of the ruin probability is performed.

https://doi.org/10.15517/rmta.v29i2.47938
PDF (Español (España))
PS (Español (España))
DVI (Español (España))

References

S. Asmussen, Ruin Probabilities, World Scientific, Singapore, 2010. Doi: 10.1142/2779

G. Blom, Harald Cramer 1893-1985, The Annals of Statistics 15 (1987), no. 4, 1335–1350. Doi: 10.1214/aos/1176350596

G. Casella, R.L. Berger, Statistical Inference, Thomson Learning, Pacific Grove CA, 2002.

A.C. Davison, Statistical Models, Cambridge University Press, Cambridge, 2003. Doi: 10.1017/CBO9780511815850

D.C.M. Dickson, Insurance Risk and Ruin, Cambridge University Press, Cambridge, 2016. Doi: 10.1017/9781316650776

J. Grandell, Aspects of Risk Theory, Springer New York, NY, 1991. Doi: 10.1007/978-1-4613-9058-9

F. Lundberg, Approximerad framstŠllning av sannolikhetsfunktionen. ÅterfšrsŠkring av kollektivrisker. Ph.D. Thesis, Uppsala: Almqvist and Wiksells, 1903.

J. Marsden, A. Tromba, Vector Calculus, W.H. Freeman and Company, New York, 2012. [9] T. Oshime, Y. Shimizu, Parametric inference for ruin probability in the classical risk model, Statistics & Probability Letters 133 (2018), 28 37. Doi: 10.1016/j.spl.2017.09.020 [10] T. Rolski, H. Schmidli, V. Schmidt, J.L. Teugels, Stochastic Processes for Insurance and Finance, Wiley, New York, 1999.

M.J. Schervish, Theory of Statistics, Springer, New York, 1995. Doi: 10.1007/978-1-4612-4250-5

H. Schmidli, Risk Theory, Springer, Cham, Switzerland, 2017. Doi: 10.1007/978-3-319-72005-0

Y.K. Tse, Nonlife Actuarial Models: Theory, Methods and Evaluation, Cambridge University Press, Cambridge,

Doi: 10.1017/CBO9780511812156

A.W. Vaart, Asymptotic Statistics, Cambridge University Press, Cambridge, 1998. Doi: 10.1017/CBO9780511802256

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2022 Revista de Matemática: Teoría y Aplicaciones

Downloads

Download data is not yet available.