Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
On the relationship between expansión angle of earth-directed CMES and soft X-ray emission from their related flare
PDF

Keywords

Sun
Coronal mass ejections
CME’s
Solar flare
Radio waves
Sol
Eyección de masa coronal
CME’s
Erupción solar
Ondas de radio

How to Cite

Salas-Matamoros , C. ., & Sánchez Guevara, J. (2023). On the relationship between expansión angle of earth-directed CMES and soft X-ray emission from their related flare. Revista De Matemática: Teoría Y Aplicaciones, 30(2), 215–227. https://doi.org/10.15517/rmta.v30i2.50449

Abstract

In space weather, to study the impact of Earth-directed coronal mass ejections (CME) in our terrestrial environment, one of the most important parameters is the propagation speed of these disturbances. We present an improvement of the 3D CME Geometrical Propagation-Expansion Description (3D-CGPED) model developed in previous work to increase the simple that we can use in CME arrival time predictions. This 3D model estimates the arrival time of Earth-directed CMEs at Earth by including a 3D geometry for the CME propagation and expansion in interplanetary space. Since the 3D-CGPED model computes the expansion of the CME based on the radial distance of the CME front, only travel times for CMEs with welldefined shapes seen by coronographs can be estimated. In the present work, we found an empirical relationship between the expansion angle of CMEs with well-defined shapes and the start-to-peak SXR fluence of their associated flares. We applied this relationship in the 3D-CGPED model to obtain the expansion angle for 8 CMEs with an irregular shape. We found similar window errors in arrival time predictions compared to the previous work. This result allows us to complement the 3D-CGPED model to include not only regular shapes but also irregular ones for CMEs observed by coronographs in future works.

https://doi.org/10.15517/rmta.v30i2.50449
PDF

References

G. E. Brueckner et al., The Large Angle Spectroscopic Coronagraph (LASCO). Solar Physics 162(Dec. 1995), 357–402. doi: 10.1007/BF00733434

G. E. Brueckner et al., Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997. Geophysical Research Letters 25(Jan. 1998), no. 15, 3019–3022. doi: 10.1029/98GL00704

R. C. Colaninno, A. Vourlidas, C. C. Wu, Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. Journal of Geophysical Research (Space Physics) 118(Nov. 2013), 6866–6879. doi: 10.1002/2013JA019205

J. M. Darnel et al., The GOES-R Solar UltraViolet Imager. Space Weather 20(Apr. 2022), no. 4, e2022SW003044. doi: 10.1029/2022SW003044

H. A. Elliott et al., An improved expected temperature formula for identifying interplanetary coronal mass ejections. Journal of Geophysical Research (Space Physics) 110(Apr. 2005), A04103. doi: 10.1029/2004JA010794

C. J. Eyles et al., The Heliospheric Imagers Onboard the STEREO Mission. Solar Physics 254(Feb. 2009), no. 2, 387–445. doi: 10.1007/s11207-008-9299-0

N. J. Fox et al., The Solar Probe Plus Mission: Humanity’s First Visit to Our Star. Space Science Reviews 204(Dec. 2016), no. 1-4, 7–48. doi: 10.1007/s11214-015-0211-6

N. Gopalswamy, A. Lara, M. L. Kaiser, An empirical model to predict the arrival of CMEs at 1 AU. AAS/Solar Physics Division Meeting #31. 2000. Vol. 32. Bulletin of the American Astronomical Society, 825.

N. Gopalswamy et al., Predicting the 1-AU arrival times of coronal mass ejections. Journal of Geophysical Research 106(2001), 29207–29218. doi: 10.1029/2001JA000177

P. K. Manoharan, Evolution of Coronal Mass Ejections in the Inner Heliosphere: A Study Using White-Light and Scintillation Images. Solar Physics 235(May 2006), no. 1-2, 345–368. doi: 10.1007/s11207-006-0100-y

C. Möstl et al., Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU. The Astrophysical Journal 787(June 2014), 119. doi: 10.1088/0004-637X/787/2/119

D. Müller et al., The Solar Orbiter mission. Astronomy & Astrophysics 642(Sept. 2020), A1. doi: 10.1051/0004-6361/202038467

C. Salas-Matamoros, K. Klein, On the Statistical Relationship Between CME Speed and Soft X-Ray Flux and Fluence of the Associated Flare. Solar Physics 290(May 2015), no. 5, 1337–1353. doi: 10.1007/s11207-015-0677-0

C. Salas-Matamoros, K. Klein, G. Trottet, Microwave radio emission as a proxy of CME speed in ICME arrival predictions at 1 AU. Journal of Space Weather and Space Climate (2016), submitted.

C. Salas-Matamoros, J. Sanchez-Guevara, A geometrical description for interplanetary propagation of Earth-directed CMEs based on radiative proxies. Monthly Notices of the Royal Astronomical Society 504(July 2021), no. 4, 5899–5906. doi: 10.1093/mnras/stab1232

R. Schwenn, A. dal Lago, E. Huttunen, W. D. Gonzalez, The association of coronal mass ejections with their effects near the Earth. Annales Geophysicae 23(2005), 1033–1059. doi: 10.5194/angeo-23-1033-2005

W. B. Song, An Analytical Model to Predict the Arrival Time of Interplanetary CMEs. Solar Physics 261(Feb. 2010), no. 2, 311–320. doi: 10.1007/s11207-009-9486-7

B. Vršnak, N. Gopalswamy, Influence of the aerodynamic drag on the motion of interplanetary ejecta. Journal of Geophysical Research 107(Feb. 2002), 1019. doi: 10.1029/2001JA000120

B. Vršnak et al., Propagation of interplanetary coronal mass ejections: the drag-based model. Solar Physics 285(2013), 295–315. doi: 10.1007/s11207-012-0035-4

Y. M.Wang et al., A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000. Journal of Geophysical Research (Space Physics) 107(Nov. 2002), no. A11, 1340. doi: 10.1029/2002JA009244

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2023 Revista de Matemática: Teoría y Aplicaciones

Downloads

Download data is not yet available.