Abstract
Clustering spatial-geographic units, zones or areas is employed to solve problems related to territorial design. The clustering adapts to the definition of territorial design of a particular problem, which demands spatial data processing under clustering schemes with topological requirements in the zones. For small instances, when the geographical compactness is attended as an objective function, this problem is solved by exact methods in an aceptable response time. However, for bigger instances and due to the combinatory nature of this problem, the computational complexity increases and the employment of approximated methods becomes a necessity, in such a way that when the geographical compactness was the only cost function, a couple of approximated methods were implemented, giving satisfactory results. A particular case of this kind of problems that has our attention in recent years is the classification of AGEBS (basic geographical units by its initials in Spanish) through partitions. Some works were made related to the formation of compact groups of AGEBS, but additional restrictions weren’t often considered. A very interesting and demanded application problem is extending the compact clustering to form groups under a homogeneity criterion to balance the number of objects in every group. This problem implies a multiobjective approach that has to tackle two objectives to attain a balance between the two. This work presents a mathematical model and the resulting implementation to achieve the equilibrium between compactness and homogeneity in the number of objects. The metaheursitic incorporated to this multiobjective clustering problem is tabu search.
References
M. Altman, The computational complexity of automated redistricting: Is automation the answer. Rutgers Computer & Tech. LJ 23(1997), 81.
M. R. Anderberg, Cluster analysis for applications: probability and mathematical statistics: a series of monographs and textbooks. Vol. 19. Academic press, 2014.
B. Bernabé Loranca, J. E. Espinosa Rosales, J. Ramírez Rodríguez y M. A. Osorio Lama, A Statistical comparative analysis of Simulated Annealing and Variable Neighborhood Search for the Geographic Clustering Problem. Español. Computación y Sistemas (2011).
B. Bernábe-Loranca et al., Extensions to K-Medoids with Balance Restrictions over the Cardinality of the Partitions. Journal of Applied Research and Technology 12(2014), no. 3, 396-408. doi: 10.1016/S1665-6423(14)71621-9
J. García y J. Maheut, Modelos de programación lineal: Definición de objetivos. Modelos y Métodos de Investigación de Operaciones. Procedimientos para Pensar (2011), 42-44.
F. Glover y M. Laguna, Tabu Search Kluwer Academic Publishers. Boston, MA (1997). doi: 10.1007/978-1-4615-6089-0
J. Kalcsics, S. Nickel y M. Schröder, Towards a unified territorial design approach—applications algorithms and GIS integration. Top 13(2005), no.1. With discussion and a rejoinder by the authors, 1-74. doi: 10. 1007 /BF02578982
L. Kaufman y P. J. Rousseeuw, Finding groups in data: an introduction to cluster analysis. John Wiley & Sons, 2009. doi: 10.1002/9780470316801
A. Kharroushe, S. Abdullah y M. Z. Ahmad Nazr, A modified tabu search approach for the clustering problem. Journal of Applied Sciences 11(2011), no. 19, 3447-3453. doi: 10.3923/jas.2011.3447.3453
S. A. Leiva-Valdebenito y F. J. Torres-Avilés, Una revisión de los algoritmos de partición más comunes en el análisis de conglomerados: un estudio comparativo. Revista Colombiana de Estadística 33(2010), no. 2, 321-339. doi:10.15446/rce
J. MacQueen, Classification and analysis of multivariate observations. 5th Berkeley Symp. Math. Statist. Probability. University of California Los Angeles LA USA. 1967, 281-297.
D. Romero, J. Burguette Constantino, L. E. Martínez Stiker y J. R. Velasco Ocampo, Formación de unidades primarias de muestreo. Boletín de los Sistemas Nacionales Estadístico y de Información Geográfica 2.1(2006), 42-51.
M. A. Salazar-Aguilar, J. L. González-Velarde y R. Z. Ríos-Mercado, A divide-and-conquer approach to commercial territory design. Computación y sistemas 16(2012), no. 3, 309-320.
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2023 Revista de Matemática: Teoría y Aplicaciones